Skip to content

Archive for

Water Potential Versus Water Content

Dr. Colin Campbell, soil physicist, shares why he thinks measuring soil water potential can be more useful than measuring soil water content.

A horsetail plant showing possible signs of guttation where the water potential in the soil overnight is high enough to force water out of the stomates in the leaves.

A horsetail plant showing possible signs of guttation where the water potential in the soil overnight is high enough to force water out of the stomates in the leaves.

I know an ecologist who installed an extensive soil water content (VWC) sensor network to study the effect of slope orientation on plant available water.  He collected good VWC data, but ultimately he was frustrated because he couldn’t tell how much of the water was available to plants.

He’s not alone in his frustration. Accurate, inexpensive soil moisture sensors have made soil VWC a justifiably popular measurement, but as many people have discovered, a good hammer doesn’t make every soil water problem a nail. I like to compare water potential to temperature because both are considered “intensive” variables that define the intensity of something.

People often try to quantify their own environment, because those measurements define comfort and happiness.  Long ago, they discovered they could make an enclosed glass tube, put mercury inside, and infer this intensive variable called temperature from the changes in the mercury’s volume. This was an obvious way to define the comfort level of a human being.

Thermometer laying on top of wood

People discovered they could make an enclosed glass tube, put mercury inside, and infer an intensive variable called temperature.

They could have measured the heat content of their surroundings.  But they would have discovered that while heat content would be higher in a larger room and lower in a smaller room, you would feel the same comfort level in both rooms.  The temperature measurement helps you know whether or not you’d be comfortable without any other variables entering into the equation.

Similar to heat content, water content is an amount. It’s an extensive variable.  It changes with size and situation. Consider the following paradoxes:

  • A soil with fairly low volumetric water content can have plenty of plant-available water and a soil with high water content can have almost none.
  • Gravity pulls water down through the profile, but water moves up into the soil from a water table.
  • Two adjacent patches of soil at equilibrium can have significantly different water content.

In these and many other cases, water content data can be confusing because they don’t predict how water moves.  Water potential measures the energy state of water and thus explains realities of water movement that otherwise defy intuition. Like temperature, water potential defines the comfort level of a plant.   Similar to the room size analogy for temperature, if we know the water potential, we can know whether plants will grow well or be stressed in any environment.

sand with plants poking out and a blue sky in the background

Soil, clay, sand, potting soil, and other media, all hold water differently.

Plants don’t understand the concept of a content in terms of “comfort” because soil, clay, sand, potting soil, and other media, all hold water differently.  Imagine a sand with 30% water content. Due to its low surface area, the sand will be too wet for optimal plant growth, threatening a lack of aeration to the roots, and flirting with saturation.  Now consider a fine textured clay at that same 30% water content. The clay may appear only moist and be well below optimum “comfort” for a plant due to the surface of the clay binding the water and making it less available to the plant.

Water potential measurements clearly indicate plant available water, and, unlike water content, there is an easy reference scale. We know that plant optimal runs from about -2-5 kPa which is on the very wet side, to about -100 kPa, at the drier end of optimal.  Below that plants will be in deficit, and past -1000 kPa they start to suffer.  Depending on the plant, water potentials below -1000 to -2000 kPa cause permanent wilting.

So, why would we want to measure water potential? Water content can only tell you how much water you have.  If you want to know how fast water can move, you need to measure hydraulic conductivity.  If you want to know whether water will move and where it’s going to go, you need water potential.

Learn more

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it. In this 20-minute webinar, discover:

  • Water content: what it is, how it’s measured, and why you need it
  • Water potential: what it is, how it’s different from water content, and why you need it
  • Whether you should measure water content, water potential, or both
  • Which sensors measure each type of parameter

Many questions about water availability and movement are best answered by measuring water potential.  To find out more, watch any of the virtual seminars below, or visit our new water potential website.

Download the “Researcher’s complete guide to water potential”—>

Water Potential 101: Making Use of an Important Tool

Water Potential 201:  Choosing the Right Instrument

Water Potential 301: How to Push Your Instruments Past their Specifications

Water Potential 401: Advances in Field Water Potential

Find out when you should measure both water potential and water content.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to soil moisture”—>

Lessons from the Field – Sensor Installation Considerations

In the Midwest, government incentives are sometimes provided to convert marginal lands to switchgrass, a leading choice for bio-energy feedstock production.  Michael Wine, a researcher at New Mexico Tech, wanted to investigate whether switchgrass’s deeper root systems would affect the water cycle both during and after crop establishment.  In the first stages of his investigation, he learned that many factors need to be considered when determining the optimal location for sensor installation.

Aquifer Recharge

Wine used Gee passive capillary lysimeters to determine deep drainage under natural vegetation, wheat, and switchgrass in order to improve our understanding of both the baseline water cycle and the water budget associated with a switchgrass monoculture in Woodward, Oklahoma.  He put the lysimeters and some soil moisture (capacitance) sensors into the Beaver-North Canadian River Alluvial Aquifer to look at recharge, but ran into challenges with sensor installation from the start.

Climate Considerations

One thing Wine learned was that biofuels aren’t very successful in his research location– there wasn’t enough water to support switchgrass.  He says, “Most places here may have no precipitation recharge for a great many years. But there are sites, such as sub-humid environments, where you could get a whole lot of infiltration in a very short time.” In hindsight, Wine says he “would have increased his use of preliminary data to more efficiently determine the frequency of recharge events.”

Using Preliminary Data to help Site Instrumentation

Wine learned that it’s important to think about the time constant of your system when siting instrumentation and that preliminary data are crucial. He says, “Before sensor installation, I did a chloride mass balance which helped me determine where I should install the lysimeters.”  He had been planning to put them at watersheds at the USDA-ARS Southern Plains Range Research Station, but the chloride mass balance showed there hadn’t been a recharge event at that site in the past 200 years. So he chose to install the lysimeters at the USDA-ARS Southern Plains Experimental Range, located in the Beaver-North Canadian River Alluvial Aquifer, a site with coarser soil and higher permeability.

Wine also thinks numerical modeling could have been useful in determining placement. “In siting the instruments, numerical modeling would’ve been a big help because we could have predicted the likelihood and frequency of recharge events.  So I think preliminary data, numerical modeling, and environmental tracers can all help in terms of where to place these research devices.”

a baby calf walking towards the photographer with other cows, who are collectively walking through a field

After long absences, Wine often had to repair damage caused by cattle.

Proximity to Research Site

Another challenge was that the researchers were located in Stillwater, Oklahoma, far from their research site. The experiment was protected by fences, but after long absences,  Wine often had to repair damage caused by cattle.  “I really need to hand it to these instruments that can be trampled numerous times by cows and the battery compartment filled up with water,” Wine says. “They just needed to be dusted off, dried out, new batteries inserted, and they worked great.”  Wine adds that researchers need to consider the distance between their office and their research site because in his case, the cows would have been less of an issue if it had been a fifteen-minute drive instead of three hours each way. He adds, “Selecting a nearby research site would have allowed us additional flexibility in our experimental methods; for example, with a nearby site we could have more easily conducted artificial rainfall simulations if a particular year turned out to be too dry for natural recharge events to occur.”

Proper Siting of Equipment Makes a Difference

Once Wine determined the correct placement of his instruments, he was finally able to get some interesting data.  He says, “There are large pulses of focused recharge that do occur in certain places, and we quantified one of those pulses following a storm with one of the lysimeters.  We’ve got about a year’s worth of data. Since we installed lysimeters at adjacent upland (diffuse recharge) and lowland (concentrated recharge) sites, we succeeded in observing large differences between the recharge fluxes at these nearby sites.”  Wine’s plan is to see if he can replicate the results of the lysimeter experiment using numerical modeling, because he says, “the data look reasonable, but I’d like to confirm the measurements due to the cows playing havoc with our site.”  Wine is excited as these lysimeters are yielding the first direct physical measurements of diffuse and concentrated groundwater recharge in the Beaver-North Canadian River Alluvial Aquifer, and he’s optimistic that his numerical modeling will match this unique time series of direct physical measurements of groundwater recharge.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Should We Replace “Wind Chill Factor”?

In a continuation of our series, based on this book, which discusses scientific ideas that need to be reexamined, Dr.’s Doug Cobos and Colin Campbell make a case for standard operative temperature to replace wind chill factor:

Frost covered plant in early morning

Currently, the forecast is based on air temperature and wind chill. What the forecast leaves out is the effect of radiation.

What are we looking for when we look at a weather forecast?  We want to know how we’re going to feel and what we need to wear when we go outside. Currently, the forecast is based on air temperature and wind chill, which are a major part of the picture, but not all of it.  What the forecast leaves out is the effect of radiation.  If you go out on a cold, sunny day, you’re going to be warmer than you would be at that same temperature and wind speed on a  cloudy day.  It’s not going to feel the same.  So why not replace wind chill with the more accurate measurement of standard operative temperature?

Where wind chill came from:

In 1969, a scientist named Landsberg created a chart showing how people feel at a certain air temperature and wind speed. His chart was based on work by Paul Siple and Charles Passel.  But, Siple and Passel’s work was done in Antarctica using a covered bottle of water under the assumption that you were wearing the thickest coat ever made.  The table was updated in 2001 to improve its accuracy, but since the coat thickness assumption remained unchanged it underestimates the chill that you feel. It also explicitly leaves out radiation, assuming the worst case scenario of a clear night sky. The controversy is detailed in this NY Times article from several years ago.

Ice covered lake with the sun reflecting off the surface, a bench in front of the lake in the snow with a person walking next to it

Siple and Passel’s work was done in Antarctica using a covered bottle of water under the assumption a person was wearing the thickest coat ever made.

During the winter, forecasters use air temperature and wind chill with no radiation component.  In the summertime, they use an index that takes into account the temperature and the humidity called the heat index.  But again, there is no accounting for radiation. Our families deal with this all the time when we take the kids out fishing in early spring. Before we leave, we’ll check the weather report for temperature and wind chill.  But is it going to be sunny or cloudy?  That’s key information. You can see the radiation effect in action when a cloud drifts in front of the sun.  All the kids scramble for their jackets because the perceived temperature has changed.  This is something that none of the indices actually capture.

Understanding the concept:

Standard operative temperature combines the effects of radiation and wind speed to give a more complete understanding of how you will feel outside.  It is a simple energy balance: the amount of energy coming in from the sun and metabolism minus the amount of energy going out through heat and vapor loss. Using this relationship and adding in the heat and vapor conductances, the temperature that we might “feel” can be graphed against the solar zenith angle at a fixed air temperature. For reference, the sun is directly overhead when the zenith angle is 0 degrees and at the horizon at 90 degrees.

Wind Chill and standard Operative temperature chart

Figure: Wind chill and standard operative temperature with respect to sun angle for two wind speeds (1 and 10 m/s) at an air temperature of -5 degrees C.

What’s interesting is that on a clear day when the sun is around 45 degrees (typical for around noon in the winter) and the temperature is -5 degrees C, if the wind is blowing at 1 m/s, you would feel a temperature of 6 degrees C (relatively warm). The wind chill predicts the feel at -6 degrees C, a huge difference in comfort.  This difference decreases with increasing wind speed as you’d expect, but even for the same conditions and wind at 10 m/s, the 45-degree sun angle creates a temperature feel 7 degrees C higher than the wind chill.  Although not huge, this makes a considerable difference in perceived comfort.

What do we do now?

The interesting thing is that all the tools to measure radiation are there. Most weather stations have a pyranometer that measures solar radiation, and some of them even measure longwave radiation, which can also be estimated within reasonable bounds. This means forecasters have all the tools to report the standard operative temperature, which is the actual temperature that you feel.  Why not incorporate standard operative temperature into each forecast? Using standard operative temperature we could have the right number, so we’d know exactly what to wear at any given time.   It’s an easy equation, and forecast websites could use it to report a “comfort index” or comfort operative temperature that will tell us exactly how we’ll feel when we go outside.

Which scientific ideas do you think need to be reexamined?

See weather sensor performance data for the ATMOS 41 weather station.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Great Science Reads: What our Scientists are Reading

We asked our scientists to share the great science reads they’ve perused recently.  Here’s what they’ve been reading:

Open book with Highlighter and Glasses on top of it

Letters to a Young Scientist by E.O. Wilson

Edward Wilson's book "Letters To A Young Scientist"

Steve Garrity: E.O. Wilson is a leader in the science of biology. This book is a simple read. What I like most about it is that it very effectively conveys Dr. Wilson’s passion for science. His thoughts on what it takes to be a successful scientist resonated with me the most.  In describing what it takes to be a successful scientist, E.O. Wilson says that being a genius, having a high IQ, and possessing mathematical fluency are all not enough. Instead, he says that success comes from hard work and finding joy in the processes of discovery. Dr. Wilson gets specific and says that the real key to success is the ability to rapidly perform numerous experiments. “Disturb nature,” he says, “and see if she reveals a secret.” Often she doesn’t, but performing rapid, and often sloppy, experiments increases the odds of discovering something new.

Out of the Scientist’s Garden by Richard Stirzaker

Picture of the cover of "Out Of The Scientist's Garden- A Story Of Water And Food"

Lauren Crawford: “Richard Stirzaker is a scientist out of Australia committed to finding tools to make farming easier and more productive in third world countries.  I love how he talks about what happens when he uses water from his washing machine on his garden and the unanticipated effects: what does the detergent do to the fertilizers and the soil properties?  It’s a scientific view of how a garden works.”

Introduction to Water in California by David Carle

The cover of the book "Introduction To Water In California" by David Carle

Chris Lund: “This is a great introduction to California’s water resources, from where the water comes from to how it is used….particularly relevant today given California’s ongoing drought and the hard choices California faces as a result.”

The Drunkard’s Walk:  How Randomness Rules our Lives, by Leonard Mlodinow

A picture of the cover of the book "The Drunkard's Walk- How Randomness Rules Our Lives" by Leonard Mlodinow

Paolo Castiglione:  “The Drunkard’s Walk’s beginning quote perfectly reflects the author’s thesis: “In God we trust. All others bring data!”. I enjoyed the author’s discussion on how the past century was strongly influenced by ideologies, in contrast to the present one, where data seems to shape people’s actions and beliefs.”

Chapter 13 of An Introduction to Environmental Biophysics, by Gaylon Campbell

A picture of the cover of the book "An Introduction To Environmental Biophysics" by Gaylon S. Campbell and John M. Norman

Colin Campbell:  “Because of teaching Environmental Biophysics class, all my focus has been on reading An Introduction to Environmental Biophysics.  And, although I’ve read it too many times to count, I finally had a chance to study the human energy balance chapter (13) in depth, which was amazing.  The way humans interact with our environment is something we deal with at every moment of every day; often not giving it much thought. In this chapter, we are reminded of the people of Tierra del Fuego (Fuegians) who were able to survive in an environment where temperatures approached 0 C daily, wearing no more than a loincloth. Using the principles of environmental biophysics and the equations developed in the chapter, we concluded that the Fuegian metabolic rate had to continuously run near the maximum of a typical human today. The food requirements to maintain that metabolic rate would be somewhere between the equivalent of 17 and 30 hamburgers per day (their diet was high in seal fat).  You can read more about the Fuegians here.”

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

A History of Thermocouple Psychrometry

Dr. Gaylon S. Campbell gives a short history on his involvement in the development of thermocouple psychometry:

seedling in a cup

A psychrometer measures wet and dry bulb temperatures of air in order to determine the relative humidity or vapor pressure.

The Original Psychrometers:

I started working with psychrometers in Sterling Taylor’s lab when I was a sophomore at Utah State University in 1960.  A psychrometer measures wet and dry bulb temperatures of air in order to determine the relative humidity or vapor pressure.  In a conventional psychrometer, a thermometer bulb is covered with a wet wick and measured to find the wet bulb temperature.  A thermocouple psychrometer is used to measure the wet bulb temperature of air equilibrated with soil or plant samples. When a plant is at permanent wilting point, its relative humidity is close to 99%, so the whole range of interest for soil and plant measurements is between 99 and 100% RH. The measurements need to be very precise.  To make a wet bulb we couldn’t use a wick. We made thermocouples from 0.001” chromel and constantan wires. We cooled the measuring junction of the wires by running a current through it (cooling using the Peltier effect), condensed dew on the wires through the cooling, and then read the wet bulb temperature by measuring the thermocouple output as the water evaporated.  We needed to measure temperature with a precision of about 0.001 C.

Diagram of isopiestic psychrometer used to measure the water potential of plant tissue.

Diagram of isopiestic psychrometer used to measure the water potential of plant tissue. Image: 6e.plantphys.net

A New Idea:

The original psychrometers we used in Dr. Taylor’s lab were single junctions mounted in rubber stoppers and placed in test tubes in a constant temperature bath. They were calibrated with salt solutions.  Typically, before we could finish a calibration, we would break the thermocouple, so we never got data on soils. I found that frustrating, so had the idea of putting the thermocouple in a sample changer which would hold 6 samples. The sample changer went in the constant temperature bath. When it was equilibrated, we could make 6 readings without taking it out or opening it up. Calibration was done in one try, and we could start running soil or plant samples right away. This was a huge improvement. Our lab was one of a very few who could even make those measurements, and we could make them six at a time. That was about 1964.

Two New Businesses Born:

Later, when I was a graduate student at WSU, I started building soil psychrometers for my own research.  Other researchers wanted them, so I taught Marv Sherman, a vet student friend to do the manufacturing, and we sold the psychrometers to whoever wanted them for the cost of his time plus materials.  There was a sizable and growing demand when he and I graduated, and no one to carry on.  My brother Eric came for my graduation.  We asked him if he would like to take over the psychrometer business, and he said yes.  We sent him home with some instructions and the materials we had left from Marv’s work.  Eric built the business himself and then sold it to Wescor, where he and my brother, Evan became employees.  I contributed ideas and helped Wescor grow for a few years, but Eric and Evan were not satisfied there and wanted to start a business of their own.  We came up with the idea of them building a laser anemometer, and that was the start of Campbell Scientific.

Image of Decagon's retired SC10/NT3 thermocouple psychrometer

Decagon’s retired SC10/NT3 thermocouple psychrometer

More Improvements:

When we were on sabbatical in England in 1977-78 I had access to a small machine shop and a machinist who was willing to make things for me.  The sample changer psychrometers up to this time all had to be used in carefully controlled constant temperature water baths.  However, the soil psychrometers that my brother, Eric, sold at Wescor worked fine with no temperature control.  I suspected it would be possible to make a sample changer that didn’t need a constant temperature bath.  I made some sketches and the machinist made it for me.  It had places for 10 samples, had a large aluminum block to hold the rotor with the samples and the thermocouple, and stood on 3 legs.  It worked fine without any temperature control.

I showed the new sample changer to my brothers at Campbell Scientific, and they set up and machined a couple of them.  CSI didn’t have much interest in selling psychrometers, though, so Decagon began as a way for my children to earn money for college by selling the thermocouple psychrometer sample changer.  The name Decagon came both from the 10 people in our family when we started and the 10 samples in the sample changer.

Thermocouple Psychrometry Fades into History:

Decagon (now METER) began selling the thermocouple psychrometer system in 1982 and updated the user-intensive calibration and measurement system to a much simpler one in the mid-1990s.  Automation, speed, simplicity, and accuracy soon tipped the scales in favor of a dewpoint technique for measuring water potential, and the system was retired and replaced by a chilled mirror hygrometer (WP4C) in 2000.  However, Dr. Campbell believes that thermocouple psychrometers may still have a role to play in measuring water potential. If you’re interested in water potential, check out our water potential pages. It puts many of our best water potential resources in one place and contains sections on theory, measurement methods, and history.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our