Skip to content

Posts from the ‘Ecology’ Category

Data collection: 8 best practices to avoid costly surprises

Every researcher’s goal is to obtain usable field data for the entire duration of a study. A good data set is one a scientist can use to draw conclusions or learn something about the behavior of environmental factors in a particular application. However, as many researchers have painfully discovered, getting good data is not as simple as installing sensors, leaving them in the field, and returning to find an accurate record. Those who don’t plan ahead, check the data often, and troubleshoot regularly often come back to find unpleasant surprises such as unplugged data logger cables, sensor cables damaged by rodents, or worse: that they don’t have enough data to interpret their results. Fortunately, most data collection mishaps are avoidable with quality equipment, some careful forethought, and a small amount of preparation.

Before selecting a site, scientists should clearly define their goals for gathering data.

Make no mistake, it will cost you

Below are some common mistakes people make when designing a study that cost them time and money and may prevent their data from being usable.

  • Site characterization: Not enough is known about the site, its variability, or other influential environmental factors that guide data interpretation
  • Sensor location: Sensors are installed in a location that doesn’t address the goals of the study (i.e., in soils, both the geographic location of the sensors and the location in the soil profile must be applicable to the research question)
  • Sensor installation: Sensors are not installed correctly, causing inaccurate readings
  • Data collection: Sensors and logger are not protected, and data are not checked regularly to maintain a continuous and accurate data record
  • Data dissemination: Data cannot be understood or replicated by other scientists

When designing a study, use the following best practices to simplify data collection and avoid oversights that keep data from being usable and ultimately, publishable.

Read more

5 ways site disturbance impacts your data—and what to do about it

Lies we tell ourselves about site disturbance

When it comes to measuring soil moisture, site disturbance is inevitable. We may placate ourselves with the idea that soil sensors will tell us something about soil water even if a large amount of soil at the site has been disturbed. Or we might think it doesn’t matter if soil properties are changed around the sensor because the needles are inserted into undisturbed soil.

site disturbance

The key to reducing the impact of site disturbance on soil moisture data is to control the scale of the disturbance.

The fact is that site disturbance does matter, and there are ways to reduce its impact on soil moisture data. Below is an exploration of site disturbance and how researchers can adjust their installation techniques to fight uncertainty in their data.

Non-disturbance methods don’t measure up—yet

During a soil moisture sensor installation, it’s important to generate the least amount of soil disturbance possible in order to obtain a representative measurement. Non-disturbance methods do exist, such as satellite, ground-penetrating radar, and COSMOS. However, these methods face challenges that make them impractical as a single approach to water content. Satellite has a large footprint, but generally measures the top 5-10 cm of the soil, and the resolution and measurement frequency is low. Ground-penetrating radar has great resolution, but it’s expensive, and data interpretation is difficult when a lower boundary depth is unknown. COSMOS is a ground-based, non-invasive neutron method which measures continuously and reaches deeper than a satellite over an area up to 800 meters in diameter. But it is cost prohibitive in many applications and sensitive to both vegetation and soil, so researchers have to separate the two signals. These methods aren’t yet ready to displace soil moisture sensors, but they work well when used in tandem with the ground truth data that soil moisture sensors can provide.

Read more

Get more info on applied environmental research in our

 

Hydrology 301: What a Hydraulic Conductivity Curve Tells You & More

Hydraulic conductivity is the ability of a porous medium (soil for instance) to transmit water in saturated or nearly saturated conditions. It’s dependent on several factors: size distribution, roughness, tortuosity, shape, and degree of interconnection of water-conducting pores. A hydraulic conductivity curve tells you, at a given water potential, the ability of the soil to conduct water.

One factor that affects hydraulic conductivity is how strong the structure is in the soil you’re measuring.

For example, as the soil dries, what is the ability of water to go from the top of a sample [or soil layer in the field] to the bottom. These curves are used in modeling to illustrate or predict what will happen to water moving in a soil system during fluctuating moisture conditions. Researchers can combine hydraulic conductivity data from two laboratory instruments, the KSAT and the HYPROP, to produce a full hydraulic conductivity curve (Figure 1).

Hydraulic conductivity curve

Figure 1. Example of hydraulic conductivity curves for three different soil types. The curves go from field saturation on the right to unsaturated hydraulic conductivity on the left.  They illustrate the difference between a well-structured clayey soil to a poorly structured clayey soil and the importance of structure to hydraulic conductivity especially at, or near, saturation.

In Hydrology 301, Leo Rivera, Research Scientist at METER, discusses hydraulic conductivity and the advantages and disadvantages of methods used to measure it.

Watch the webinar below.

 

 

Get more info on applied environmental research in our

IoT Technologies for Irrigation Water Management (Part 2)

Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, continues (see part 1) to discuss the strengths and limitations of  IoT technologies for irrigation water management.

Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and a reasonable cost.

LoRaWAN (a vendor-managed solution see part 1) is ideal for monitoring applications where sensors need to send data only a couple of times per day with very high battery life at very low cost. Cellular IoT, on the other hand, works best for agricultural applications where sensors are required to send data more frequently and irrigation valves need to be turned on/off. Low-Power Wide-Area Networking (LPWAN) technologies need gateways or base stations for functioning. The gateway uploads data to a cloud server through traditional cellular networks like 4G. Symphony Link has an architecture very similar to LoRaWAN with higher degree of reliability appropriate for industrial applications. The power budget of LTE Cat-M1 9 (a network operator LPWAN) is 30% higher per bit than technologies like SigFox or LoRaWAN, which means more expensive batteries are required. Some IoT technologies like LoRa and SigFox only support uplink suited for monitoring while cellular IoT allows for both monitoring and control. LTE-M is a better option for agricultural sensor applications where more data usage is expected.

NB-IoT is more popular in EU and China and LTE Cat-M1 in the U.S. and Japan. T-Mobile is planning to deploy NB-IoT network in the U.S. by mid-2018 following a pilot project in Las Vegas. Verizon and AT&T launched LTE Cat-M1 networks last year and their IoT-specific data plans are available for purchase. Verizon and AT&T IoT networks cover a much greater area than LoRa or Sigfox. An IoT device can be connected to AT&T’s network for close to $1.00 per month, and to Verizon’s for as low as $2 per month for 1MB of data. A typical sensor message generally falls into 10-200 bytes range. With the overhead associated with protocols to send the data to the cloud, this may reach to 1KB. This can be used as a general guide to determine how much data to buy from a network operator.

Studies show there is a potential for over 50% water savings using sensor-based irrigation scheduling methods.

What the future holds

Many startup companies are currently focused on the software aspect of IoT, and their products lack the sensor technology. The main problem they have is that developing good sensors is hard. Most of these companies will fail before batteries of their sensors die. Few will survive or prevail in the very competitive IoT market. Larger companies who own sensor technologies are more concerned with the compatibility and interoperability of these IoT technologies and will be hesitant to adopt them until they have a clear picture. It is going to take time to see both IoT and accurate soil/plant sensors in one package in the market.  

With the rapid growth of IoT in other areas, there will be an opportunity to evaluate different IoT technologies before adopting them in agriculture. As a company, you may be forced to choose specific IoT technology. Growers and consultants should not worry about what solution is employed to transfer data from their field to the cloud and to their computer or smart phones, as long as quality data is collected and costs and services are reasonable. Currently, some companies are using traditional cellular networks. It is highly likely that they will finally switch to cellular IoT like LTE Cat-M1. This, however, may potentially increase the costs in some designs due to the higher cost of cellular IoT data plans.

Get more info on applied environmental research in our

IoT Technologies for Irrigation Water Management

Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, discusses where and why IoT fits into irrigation water management. In addition, he explores possible price, range, power, and infrastructure road blocks.

Wireless sensor networks collect detailed data on plants in areas of the field that behave differently.

Studies show there is a potential for water savings of over 50% with sensor-based irrigation scheduling methods. Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and a reasonable cost. Wireless sensor networks can collect data on plants in a lot of detail in areas of the field that behave differently. The need for wireless sensors and actuators has led to the development of IoT (Internet of Things) solutions referred to as Low-Power Wide-Area Networking or LPWAN. IoT simply means wireless communication and connecting to some data management system for further analysis. LPWAN technologies are intended to connect low-cost, low-power sensors to cloud-based services. Today, there are a wide range of wireless and IoT connectivity solutions available raising the question of which LPWAN technology best suits the application?

IoT Irrigation Management Scenarios

The following are scenarios for implementing IoT:

  1. buying a sensor that is going to connect to a wireless network that you own (i.e., customer supplied like Wi-Fi, Bluetooth),
  2. buying the infrastructure or at least pieces of it to install on site (i.e., vendor managed LPWAN such as LoRaWAN, Symphony Link), and
  3. relying on the infrastructure from a network operator LPWAN (e.g., LTE Cat-M1, NB-IOT, Sigfox, Ingenu, LoRWAN).

This is how cellular network operators or cellular IoT works. LPWAN technology fits well into agricultural settings where sensors need to send small data over a wide area while relying on batteries for many years. This distinguishes LPWAN from Bluetooth, ZigBee, or traditional cellular networks with limited range and higher power requirements. However, like any emerging technology, certain limitations still exist with LPWAN.

Individual sensor subscription fees in cellular IoT may add up and make it very expensive where many sensors are needed.

IoT Strengths and Limitations

The average data rate in cellular IoT can be 20 times faster than LoRa or Symphony Link, making it ideal for applications that require higher data rates. LTE Cat-M1 (aka LTE-M), for example, is like a Ferrari in terms of speed compared to other IoT technologies. At the same time, sensor data usage is the most important driver of the cost in using cellular IoT. Individual sensor subscription fee in cellular IoT may add up and make it very expensive where many sensors are needed. This means using existing wireless technologies like traditional cellular or ZigBee to complement LPWAN. One-to-many architecture is a common approach with respect to wireless communication and can help save the most money. Existing wireless technologies like Bluetooth LE, WiFi or ZigBee can be exploited to collect in-field data. In this case, data could be transmitted in-and-out of the field through existing communication infrastructure like a traditional cellular network (e.g., 3G, 4G) or LAN. Alternatively, private or public LPWAN solutions such as LoRaWAN gateways or cellular IoT can be used to push data to the cloud. Combination of Bluetooth, radio or WiFi with cellular IoT means you will have fewer bills to pay. It is anticipated that, with more integrations, the IoT market will mature, and costs will drop further.

Many of LPWAN technologies currently have a very limited network coverage in the U.S. LTE Cat-M1 by far has the largest coverage. Ingenu, which is a legacy technology, Sigfox and NB-IOT have very limited U.S. coverage. Some private companies are currently using subscription-free, crowd-funded LoRaWAN networks to provide service to U.S. growers: however, with a very limited network footprint. Currently, cellular IoT does not perform well in rural areas without strong cellular data coverage.

In two weeks: Dr. Osroosh continues to discuss IoT strengths and limitations in part 2.

Get more info on applied environmental research in our

 

Lab vs. field instruments—when to use both

Whether researchers measure soil hydraulic properties in the lab or in the field, they’re only getting part of the picture. Laboratory systems are highly accurate due to controlled conditions, but lab measurements don’t take into account site variability such as roots, cracks, or wormholes that might affect soil hydrology. In addition, when researchers take a sample from the field to the lab, they often compress soil macropores during the sampling process, altering the hydraulic properties of the soil.

Field sensors

Roots, cracks, and wormholes all affect soil hydrology

Field experiments help researchers understand variability and real time conditions, but they have the opposite set of problems. The field is an uncontrolled system. Water moves through the soil profile by evaporation, plant uptake, capillary rise, or deep drainage, requiring many measurements at different depths and locations. Field researchers also have to deal with the unpredictability of the weather. Precipitation may cause a field drydown experiment to take an entire summer, whereas in the lab it takes only a week.

The big picture—supersized

Researchers who use both lab and field techniques while understanding each method’s strengths and limitations can exponentially increase their understanding of what’s happening in the soil profile. For example, in the laboratory, a researcher might use the PARIO soil texture analyzer to obtain accurate soil texture data, including a complete particle size distribution. They could then combine those data with a HYPROP-generated soil moisture release curve to understand the hydraulic properties of that soil type. If that researcher then adds high-quality field data in order to understand real world field conditions, then suddenly they’re seeing the larger picture.

Field instruments

Table 1. Lab and field instrument strengths and limitations

Below is an exploration of lab versus field instrumentation and how researchers can combine these instruments for an increased understanding of their soil profile. Click the links for more in-depth information about each topic.

Particle size distribution and why it matters

Soil type and particle size analysis are the first window into the soil and its unique characteristics. Every researcher should identify the type of soil that they’re working with in order to benchmark their data.

Field instruments

Particle size analysis defines the percentage of coarse to fine material that makes up a soil

If researchers don’t understand their soil type, they can’t make assumptions about the state of soil water based on water content (i.e., if they work with plants, they won’t be able to predict whether there will be plant available water). In addition, differing soil types in the soil’s horizons may influence a researcher’s measurement selection, sensor choice, and sensor placement.

Read more

3 Insider Strategies for a More Accurate Soil Moisture Picture (Part 1)

How Do you Know You’re Getting Accurate Soil Moisture?

Researchers and irrigators may wonder if their soil moisture sensors are accurate because probes at different locations in the same field have different water content readings. Different readings in soil moisture sensors are caused by spatial variation in water content. These readings provide researchers valuable information about soil texture, watering patterns, and water use. Here are some ideas and strategies to keep in mind when trying to understand the varying patterns of soil moisture at your research or irrigation site. Click the links for more in-depth information about accurate soil moisture.

accurate soil moisture

One irrigator noticed a few sensors indicating low water content after a heavy rain that had uniformly wetted his vineyard.

Horizontal vs. Vertical Variation

It’s helpful to distinguish variation in the vertical from variation in the horizontal. Most people expect strong vertical variation due to wetting and drying patterns, soil horizonation, and compaction. Water content can vary drastically over distances of only a few centimeters, especially near the soil surface. Horizontal variation is typically less pronounced-in a bare or uniformly planted field, and at a given depth, it might be quite small. But surprisingly large variations can exist, indicating isolated patches of sand or clay or differences in topography. One irrigator noticed a few sensors indicating low water content after a heavy rain that had uniformly wetted his vineyard. Knowing that sand has a low field capacity water content, he surmised (correctly) that he had found the sandy areas in the vineyard.

Soil moisture sensors sometimes measure unexpected things.

Unexpected Readings

Because properly installed dielectric soil moisture sensors lie in undisturbed (and therefore unanalyzed) soil, they sometimes measure unexpected things. One researcher buried a probe in what appeared to be a very dry location and was startled to measure 25 to 30% volumetric water content. Those readings made the soil appear saturated, but obviously it wasn’t. She dug down to the sensor and found a pocket of clay. As she discovered, it is impossible to get much information from an absolute water content measurement without knowing what type of soil the sensor is in.

Since we expect variation, how do we account for it? How many probes are needed to adequately characterize the water content in an application or experiment? There is no simple answer to this question. The answer will be affected by your site, your goals, and how you plan to analyze your data. Here are some things you might consider as you plan.

Accurate soil moisture

If a field will be irrigated as a unit, it should be monitored as a unit at one representative spot.

Strategy #1: Irrigation—Use Soil Moisture as an Indicator

What information do you have when you know a field’s volumetric water content? That number independently tells an irrigator very little. Soil moisture can be used like a gauge to show when a field is full and when it needs to be refilled, but the “full” and “empty” are only meaningful in context.

The goals of irrigation are to keep root zone water within prescribed limits and to minimize deep drainage. Understanding and monitoring the vertical variation lets you correlate a real time graph of water use data with above-ground field conditions and plant water needs. It makes sense to place probes both within and below the root zone.

By contrast, measuring horizontal variation—placing sensors at different spots in the field—is not very helpful. If a field will be irrigated as a unit, it should be monitored as a unit at one representative spot. Because there’s no way to adjust water application in specific spots, there’s no benefit to quantifying spatial variation in the horizontal. Like a float in a gas tank, a set of soil moisture sensors in the right spot will adequately represent the changing soil moisture condition of the whole field.

We recommend a single probe location in each irrigation zone with a minimum of one probe in the root zone and one probe below it. Additional probes at that site, within and below the root zone, will increase the reliability of the information for the irrigation manager, at minimal additional cost.

In two weeks: Learn two more techniques researchers use in crop studies and ecology studies to account for variability in order to obtain an accurate soil moisture picture.

Get more info on applied environmental research in our

 

PRI & the Power of Spectral Indices

In this brief 30-minute webinar, Dr. John Gammon, University of Alberta, teaches the basics of the Photochemical Reflectance Index (PRI).

PRI

He gives a introduction to the photochemical reflectance index and what it can tell researchers about xanthophyll cycle activity, carotenoid: chlorophyll pigment ratios, light-use efficiency, and plant stress. He also discusses remote sensing.

Topics include:

  • Energy distribution in a leaf
  • Leaf optical changes upon shade removal
  • Photosynthetic light response curve
  • Uses as a stress indicator
  • Temporal and spacial patterns in photoprotection
  • How does photoprotection vary with tree age?
  • Kinetics: sun vs. shade
  • Applications
  • Can it “scale”?
  • Light-use efficiency model

Watch the webinar

 

More canopy webinars:

Using PRI to Monitor Crop Stress

Leaf Area Index: Theory, Measurement, and Application

NDVI and PRI: Measurement, Theory, and Application

Get more info on applied environmental research in our

 

Top Five Blog Posts in 2017

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2017.

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Soil moisture sensor

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system. Read more

Get More From your NDVI Sensor

Modern technology has made it possible to sample Normalized Difference Vegetation Index (NDVI) across a range of scales both in space and in time, from satellites sampling the entire earth’s surface to handheld small sensors that measure individual plants or even leaves.  Read more

Improved Methods Save Money in Future Borehole Thermal Energy Storage Design

Globally, the gap between the energy production and consumption is growing wider. To promote sustainability, University of California San Diego PhD candidate and ASCE GI Sustainability in Geotechnical Engineering committee member, Tugce Baser, Dr. John McCartney, Associate Professor, and their research team, Dr. Ning Lu, Professor at Colorado School of Mines and Dr. Yi Dong, Postdoctoral Researcher at Colorado School of Mines, are working on improving methods for borehole thermal energy storage (BTES), a system which stores solar heat in the soil during the summer months for reuse in homes during the winter. Read more

New Weather Station Technology in Africa

Weather data, used for flight safety, disaster relief, crop and property insurance, and emergency services, contributes over $30 billion in direct value to U.S. consumers annually. Since the 1990’s in Africa, however, there’s been a consistent decline in the availability of weather observations. Read more

Electrical Conductivity of Soil as a Predictor of Plant Response

Plants require nutrients to grow, and if we fail to supply the proper nutrients in the proper concentrations, plant function is affected. Fertilizer in too high concentration can also affect plant function, and sometimes is fatal.  Read more

And our three most popular blogs of all time:

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity  from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more

How to Measure Water Potential

In the conclusion of our 3-part water potential  series (see part 1), we discuss how to measure water potential—different methods, their strengths, and their limitations. Read more

Do the Standards for Field Capacity and Permanent Wilting Point Need to be Reexamined?

We were inspired by this Freakonomics podcast, which highlights the bookThis Idea Must Die: Scientific Problems that are Blocking Progress, to come up with our own answers to the question:  Which scientific ideas are ready for retirement?  We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point. Read more

Check out our 

Get info on applied environmental research in our

 

Irrigation Curves—A Novel Irrigation Scheduling Technique

This week, guest author Dr. Michael Forster, of Edaphic Scientific Pty Ltd & The University of Queensland, writes about new research using irrigation curves as a novel technique for irrigation scheduling.

Growers do not have the time or resources to investigate optimal hydration for their crop. Thus, a new, rapid assessment is needed.

Measuring the hydration level of plants is a significant challenge for growers. Hydration is directly quantified via plant water potential or indirectly inferred via soil water potential. However, there is no universal point of dehydration with species and crop varieties showing varying tolerance to dryness. What is tolerable to one plant can be detrimental to another. Therefore, growers will benefit from any simple and rapid technique that can determine the dehydration point of their crop.

New research by scientists at Edaphic Scientific, an Australian-based scientific instrumentation company, and the University of Queensland, Australia, has found a technique that can simply and rapidly determine when a plant requires irrigation. The technique builds on the strong correlation between transpiration and plant water potential that is found across all plant species. However, new research applied this knowledge into a technique that is simple, rapid, and cost-effective, for growers to implement.

Current textbook knowledge of plant dehydration

The classic textbook values of plant hydration are field capacity and permanent wilting point, defined as -33 kPa (1/3 Bar) and -1500 kPa (15 Bar) respectively. It is widely recognized that there are considerable limitations with these general values. For example, the dehydration point for many crops is significantly less than 15 Bar.

Furthermore, values are only available for a limited number of widely planted crops. New crop varieties are constantly developed, and these may have varying dehydration points. There are also many crops that have no, or limited, research into their optimal hydration level. Lastly, textbook values are generated following years of intensive scientific research. Growers do not have the time, or resources, to completely investigate optimal hydration for their crop. Therefore, a new technique that provides a rapid assessment is required.

How transpiration varies with water potential

There is a strong correlation between transpiration and plant water potential: as plant water potential becomes more negative, transpiration decreases. Some species are sensitive and show a rapid decrease in transpiration; other species exhibit a slower decrease.

Plant physiologist refer to P50 as a value that clearly defines a species’ tolerance to dehydration. One definition of P50 is the plant water potential value at which transpiration is 50% of its maximum rate. P50 is also defined as the point at which hydraulic conductance is 50% of its maximum rate. Klein (2014) summarized the relationship between transpiration and plant water potential for 70 plant species (Figure 1). Klein’s research found that there is not a single P50 for all species, rather there is a broad spectrum of P50 values (Figure 1).

Figure 1. The relationship between transpiration (stomatal conductance) and leaf water potential for 70 plant species. The dashed red lines indicate the P80 and P50 values. The irrigation refill point can be determined where the dashed red lines intersect with the data on the graph. Image has been adapted from Klein (2014), Figure 1b.

Taking advantage of P50

The strong, and universal, relationship between transpiration and water potential is vital information for growers. A transpiration versus water potential relationship can be quickly, and easily, established by any grower for their specific crop. However, as growers need to maintain optimum plant hydration levels for growth and yield, the P50 value should not be used as this is too dry. Rather, research has shown a more appropriate value is possibly the P80 value. That is, the water potential value at the point that transpiration is 80% of its maximum.

Irrigation Curves – a rapid assessment of plant hydration

Research by Edaphic Scientific and University of Queensland has established a technique that can rapidly determine the P80 value for plants. This is called an “Irrigation Curve” which is the relationship between transpiration and hydration that indicates an optimal hydration point for a specific species or variety.

Once P80 is known, this becomes the set point at which plant hydration should not go beyond. For example, a P80 for leaf water potential may be -250 kPa. Therefore, when a plant approaches, or reaches, -250 kPa, then irrigation should commence.

P80 is also strongly correlated with soil water potential and, even, soil volumetric water content. Soil water potential and/or content sensors are affordable, easy to install and maintain, and can connect to automated irrigation systems. Therefore, establishing an Irrigation Curve with soil hydration levels, rather than plant water potential, may be more practical for growers.

Example irrigation curves

Irrigation curves were created for a citrus (Citrus sinensis) and macadamia (Macadamia integrifolia). Approximately 1.5m tall saplings were grown in pots with a potting mixture substrate. Transpiration was measured daily, between 11am and 12pm, with a SC-1 Leaf Porometer. Soil water potential was measured by combining data from an MPS-6 Matric Potential Sensor and WP4 Dewpoint Potentiometer. Soil water content was measured with a GS3 Water Content, Temperature and EC Sensor. Data from the GS3 and MPS-6 sensors were recorded continuously at 15-minute intervals on an Em50 Data Logger. When transpiration was measured, soil water content and potential were noted. At the start of the measurement period, plants were watered beyond field capacity. No further irrigation was applied, and the plants were left to reach wilting point over subsequent days.

Figure 2. Irrigation Curves for citrus and macadamia based on soil water potential measurements. The dashed red line indicates P80 value for citrus (-386 kPa) and macadamia (-58 kPa).

Figure 2 displays the soil water potential Irrigation Curves, with a fitted regression line, for citrus and macadamia. The P80 values are highlighted in Figure 2 by a dashed red line. P80 was -386 kPa and -58 kPa for citrus and macadamia, respectively. Figure 3 shows the results for the soil water content Irrigation Curves where P80 was 13.2 % and 21.7 % for citrus and macadamia, respectively.

Figure 3. Irrigation Curves for citrus and macadamia based on soil volumetric water content measurements. The dashed red line indicates P80 value for citrus (13.2 %) and macadamia (21.7 %).

From these results, a grower should consider maintaining soil moisture (i.e. hydration) above these values as they can be considered the refill points for irrigation scheduling.

Further research is required

Preliminary research has shown that an Irrigation Curve can be successfully established for any plant species with soil water content and water potential sensors. Ongoing research is currently determining the variability of generating an Irrigation Curve with soil water potential or content. Other ongoing research includes determining the effect of using a P80 value on growth and yield versus other methods of establishing a refill point. At this stage, it is unclear whether there is a single P80 value for the entire growing season, or whether P80 shifts depending on growth or fruiting stage. Further research is also required to determine how P80 affects plants during extreme weather events such as heatwaves. Other ideas are also being investigated.

For more information on Irrigation Curves, or to become involved, please contact Dr. Michael Forster: michael@edaphic.com.au

Reference

Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28, 1313-1320. doi: 10.1111/1365-2435.12289

Get more information on applied environmental research in our

%d bloggers like this: