Skip to content

Posts from the ‘Horticulture’ Category

Data deep dive: why am I seeing diurnal changes in soil moisture?

In the video below, METER soil scientist Dr. Colin Campbell discusses an often-misdiagnosed water content signal that looks like typical diurnal temperature cycling but is actually due to a phenomenon called hydraulic redistribution. He shows how easily these patterns can be seen in ZENTRA Cloud data management software.

Watch the video

 

 

 

Learn more about measuring soil moisture. Download “The researcher’s complete guide to soil moisture“.

To understand how soil moisture and soil water potential work together, download “The researcher’s complete guide to water potential.”

Chalk Talk: Intensive vs. Extensive Variables

Learn the difference between intensive and extensive variables and how they relate to soil water potential vs. soil water content in our new Chalk Talk whiteboard series. In this video series, Dr. Colin S. Campbell teaches basic principles of environmental biophysics and how they relate to measuring different parameters of the soil-plant-atmosphere continuum.

Watch the video

 

Learn more

To learn more about measuring water potential vs. water content read: Why soil moisture sensors can’t tell you everything.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Video transcript

Hello, my name is Colin Campbell. I’m a senior research scientist here at METER group. And I teach a class on environmental biophysics. Today I wanted to talk about something we teach in the class: the difference between extensive and intensive variables. I’d like to do this with the goal of relating it to the difference between volumetric water content and water potential. 

Here, I have a picture of a ship moving through the ice and some metal that’s been heated in a furnace. I think we would agree the ship has the highest amount of heat in it compared to this very small piece of metal. And if we placed that piece of metal onto the outside of the ship, despite the fact that there is more heat in the metal, we know the heat would not move from the high amount of heat (ship) to the low amount of heat (metal). It would actually move from the highest temperature to the lowest temperature. Why is that?

The reason is that heat moves because of temperature and not because of heat content or the amount of heat in something. Heat content defines an amount or an extent. And we generally term something that defines an extent or an amount as an extensive variable.An extensive variable depends broadly on the size of something or how much of something there is. 

This differs for temperature. Temperature doesn’t depend on size. The temperature could be the same in a very small room or a very large room, but the amount of heat or heat content in those rooms would be quite different. When we describe temperature, we talk about intensity, which is why we call these types of variables intensive variables. This is because they don’t depend on size or amount. 

Let’s talk about another example. Here’s your heating bill. Maybe it’s natural gas. What you’re paying for is the amount of heat you put into the house. But the question is, are you comfortable in the house? And from this bill, we can’t tell. Maybe you put in 200 heat units, whatever those might be. We can’t tell if that’s comfortable because we don’t know the size of the house or the type of insulation. All those things would influence whether you were comfortable. 

Alternatively, if the temperature is 71 F that’s quite comfortable. That’s equivalent to about 22 degrees Celsius. So the intensive variable, temperature, is different than the extensive variable, heat content, that tells us how much heat we put in. And that’s important because at the end of the day, that leads to cost. 

On this side, we don’t know how much we paid to keep it at 22 C because heat content doesn’t tell us anything about that. But the intensive variable temperature does tell us something about comfort. So both of these variables are critical to really understanding something about our comfort in the house. 

Now let’s talk about the natural environment. Specifically, we’re going to talk about soils. We’ll start with the extensive variable. When we talk about water in soil, the extensive variable is, of course, water content. Water content defines the amount of water. Why would we care about water content? Well, for irrigation or a water balance.

The intensive variable is called water potential. What does water potential tell us? It tells us if soil water is available and also predicts water movement. If this soil had a water content of 25% VWC and another soil was at 20% VWC, would the water move from the higher water content to the lower water content? Well, that would be like our example of the ship and the heated piece of metal. We don’t know if it would move. It may move. And if the soil on either side was exactly the same, we might presume that it would move from the higher water content to the lower water content, but we actually don’t know. Because the water content is an extensive variable, it only tells us how much there is. It won’t tell us if it will move. 

Now, if we knew that this soil water potential was -20 kPa and this soil water potential over here was -15 kPa, we would know something about where the water would move, and it would do something different than we might think. It would move from the higher water potential to the lower water potential against the gradient in water content, which is pretty interesting but nonetheless true. Water always moves from the highest water potential to the lowest water potential.

This helps us understand these variables in terms of plant comfort. We talked about the temperature being related to human comfort. We know at what temperatures we are most comfortable. With plants, we know exactly the same thing, and we always turn to the intensive variable, water potential, to define plant comfort.

For example, if we have an absolute scale like water potential for a particular plant, let’s say -15 kPa is the upper level for plant comfort, and -100 kPa is the lower level of comfort, we could keep our water potential in this range. And the plant would be happy all the time. Just like if we kept our temperature between 21 and 23 Celsius, that would be comfortable for humans. But of course, we humans are different. Some people think that temperature is warm, and some think it’s cold. And it’s the same for plants. So this isn’t a hard and fast rule. But we can’t say the same thing with water content. There’s no scale where we can say at 15% water content up to 25% water content you’ll have a happy plant That’s not true.If we know something about the soil, we can infer it. But soil is unique. And we’d have to derive this relationship between the water content and the water potential to know that. 

So why would we ever think about using water content when we measure water in the soil? One reason is it’s the most familiar to people. And it’s the simplest to understand. It’s easy to understand an amount. But more importantly, when we talk about things like how much we’re going to irrigate, we might need to put on 10 millimeters of water to make the plants happy. And we’d need to measure that. Also if we want to know the fate of the water in the system, how much precipitation and irrigation we put on versus how much is moving down through the soil into the groundwater, that also relates to an amount.  

But when we want to understand more about plant happiness or how water moves, it’s going to be this intensive variable, water potential that makes the biggest difference. And so with that, I’ll close. I’d love for you to go check out our website www.metergroup.com to learn a little bit more about these measurements in our knowledge base. And you’re also welcome to email me about this at colin.campbell@meter group.com.

Soil moisture: ECH20 vs. TEROS, which is better?

See how the new TEROS soil moisture sensor line compares with METER’s trusted ECH20 sensor line.

TEROS 12 soil moisture sensor

Volumetric water content—defined

To evaluate the performance of any water content sensor, you need to first understand its technology. In order to do this, it’s necessary to understand how volumetric water content (VWC) is measured. Volumetric water content is the volume of water divided by the volume of soil (Equation 1) which gives the percentage of water in a soil sample.

So, for instance, if a volume of soil (Figure 1) was made up the following constituents: 50% soil minerals, 35% water, and 15% air, that soil would have a 35% volumetric water content.

The percentage of water by mass (wm) can be measured directly using the gravimetric method, which involves subtracting the oven-dry soil mass (md) from the mass of moist soil (giving the mass of water, mw) and dividing by md (Equation 2).

The resulting gravimetric water content can be converted to volumetric by multiplying by the dry bulk density of the soil (b) (Equation 3).

Why capacitance technology works

Volumetric water content can also be measured indirectly: meaning a parameter related to VWC is measured, and a calibration is used to convert that amount to VWC. All METER soil moisture sensors use an indirect method called capacitance technology. In simple terms, capacitance technology uses two metal electrodes (probes or needles) to measure the charge-storing capacity (or apparent dielectric permittivity) of whatever is between them.

Table 1 illustrates that every common soil constituent has a different charge-storing capacity. In a soil, the volume of most of these constituents will stay constant over time, but the volume of air and water will fluctuate.

Since air stores almost no charge and water stores a large charge, it is possible to measure the change in the charge-storing ability of a soil and relate it to the amount of water (or VWC) in that soil. (For a more detailed explanation of capacitance technology watch our Soil Moisture: methods/applications webinar.

Capacitance today is highly accurate

When capacitance technology was first used to measure soil moisture in the 1970s, scientists soon realized that how quickly the electromagnetic field was charged and discharged was critical to success. Low frequencies led to large soil salinity effects on the readings. Over time, this new understanding, combined with advances in the speed of electronics, enabled the original capacitance approach to be adjusted for success. Modern capacitance sensors, such as METER sensors, use high frequencies (70 MHz) to minimize effects of soil salinity on readings.

The circuitry in capacitance sensors can be designed to resolve extremely small changes in volumetric water content, so much so, that NASA used METER’s capacitance technology to measure water content on Mars. Capacitance soil moisture sensors are easy to install and tend to have low power requirements. They may last for years in the field powered by a small battery pack in a data logger.   

TEROS and ECH20: same trusted technology

Both TEROS and ECH20 soil moisture sensors use the same trusted, high-frequency (70 MHz) capacitance technology that is published in thousands of peer-reviewed papers. Figure 3 shows the calibration data for the ECH20 5TE and TEROS 12.

Read the full article….

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Just released: ATMOS 41 comparison testing data

Climate parameters such as precipitation, air temperature, and wind speed can change considerably across short distances in the natural environment. However, most weather observations either sacrifice spatial resolution for scientific accuracy or research-grade accuracy for spatial resolution.

weather station

ATMOS 41 all-in-one weather station

The ATMOS 41 represents an optimization of both. It was carefully engineered to maximize accuracy at a price point that allows for spatially distributed observations. Additionally, because many researchers need to avoid frequent maintenance and long setup times, the ATMOS 41 weather station was designed to reduce complexity and withstand long-term deployment in harsh environments. To eliminate breakage, it contains no moving parts, and it only requires recalibration every two years. Since all 14 measurements are combined in a single unit, it can be deployed quickly and with almost no effort. Its only requirement is to be mounted and leveled on top of a pole with an unobstructed view of the sky.

Comparison testing and sensor-to-sensor variability data

METER released the ATMOS 41 in January 2017 after extensive development and testing with partnerships across the world, in Africa, Europe, and the US. We performed comparison testing with high-quality, research-grade non-METER sensors and conducted time-series testing for sensor-to-sensor variability.

See performance data for the ATMOS 41 weather station

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Data collection: 8 best practices to avoid costly surprises

Every researcher’s goal is to obtain usable field data for the entire duration of a study. A good data set is one a scientist can use to draw conclusions or learn something about the behavior of environmental factors in a particular application. However, as many researchers have painfully discovered, getting good data is not as simple as installing sensors, leaving them in the field, and returning to find an accurate record. Those who don’t plan ahead, check the data often, and troubleshoot regularly often come back to find unpleasant surprises such as unplugged data logger cables, soil moisture sensor cables damaged by rodents, or worse: that they don’t have enough data to interpret their results. Fortunately, most data collection mishaps are avoidable with quality equipment, some careful forethought, and a small amount of preparation.

Before selecting a site, scientists should clearly define their goals for gathering data.

Make no mistake, it will cost you

Below are some common mistakes people make when designing a study that cost them time and money and may prevent their data from being usable.

  • Site characterization: Not enough is known about the site, its variability, or other influential environmental factors that guide data interpretation
  • Sensor location: Sensors are installed in a location that doesn’t address the goals of the study (i.e., in soils, both the geographic location of the sensors and the location in the soil profile must be applicable to the research question)
  • Sensor installation: Sensors are not installed correctly, causing inaccurate readings
  • Data collection: Sensors and logger are not protected, and data are not checked regularly to maintain a continuous and accurate data record
  • Data dissemination: Data cannot be understood or replicated by other scientists

When designing a study, use the following best practices to simplify data collection and avoid oversights that keep data from being usable and ultimately, publishable.

Read more

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Hydrology 301: What a Hydraulic Conductivity Curve Tells You & More

Hydraulic conductivity is the ability of a porous medium (soil for instance) to transmit water in saturated or nearly saturated conditions. It’s dependent on several factors: size distribution, roughness, tortuosity, shape, and degree of interconnection of water-conducting pores. A hydraulic conductivity curve tells you, at a given water potential, the ability of the soil to conduct water.

One factor that affects hydraulic conductivity is how strong the structure is in the soil you’re measuring.

For example, as the soil dries, what is the ability of water to go from the top of a sample [or soil layer in the field] to the bottom. These curves are used in modeling to illustrate or predict what will happen to water moving in a soil system during fluctuating moisture conditions. Researchers can combine hydraulic conductivity data from two laboratory instruments, the KSAT and the HYPROP, to produce a full hydraulic conductivity curve (Figure 1).

Hydraulic conductivity curve

Figure 1. Example of hydraulic conductivity curves for three different soil types. The curves go from field saturation on the right to unsaturated hydraulic conductivity on the left.  They illustrate the difference between a well-structured clayey soil to a poorly structured clayey soil and the importance of structure to hydraulic conductivity especially at, or near, saturation.

In Hydrology 301, Leo Rivera, Research Scientist at METER, discusses hydraulic conductivity and the advantages and disadvantages of methods used to measure it.

Watch the webinar below.

 

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

IoT Technologies for Irrigation Water Management (Part 2)

Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, continues (see part 1) to discuss the strengths and limitations of  IoT technologies for irrigation water management.

Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and a reasonable cost.

LoRaWAN (a vendor-managed solution see part 1) is ideal for monitoring applications where sensors need to send data only a couple of times per day with very high battery life at very low cost. Cellular IoT, on the other hand, works best for agricultural applications where sensors are required to send data more frequently and irrigation valves need to be turned on/off. Low-Power Wide-Area Networking (LPWAN) technologies need gateways or base stations for functioning. The gateway uploads data to a cloud server through traditional cellular networks like 4G. Symphony Link has an architecture very similar to LoRaWAN with higher degree of reliability appropriate for industrial applications. The power budget of LTE Cat-M1 9 (a network operator LPWAN) is 30% higher per bit than technologies like SigFox or LoRaWAN, which means more expensive batteries are required. Some IoT technologies like LoRa and SigFox only support uplink suited for monitoring while cellular IoT allows for both monitoring and control. LTE-M is a better option for agricultural weather and soil moisture sensor applications where more data usage is expected.

NB-IoT is more popular in EU and China and LTE Cat-M1 in the U.S. and Japan. T-Mobile is planning to deploy NB-IoT network in the U.S. by mid-2018 following a pilot project in Las Vegas. Verizon and AT&T launched LTE Cat-M1 networks last year and their IoT-specific data plans are available for purchase. Verizon and AT&T IoT networks cover a much greater area than LoRa or Sigfox. An IoT device can be connected to AT&T’s network for close to $1.00 per month, and to Verizon’s for as low as $2 per month for 1MB of data. A typical sensor message generally falls into 10-200 bytes range. With the overhead associated with protocols to send the data to the cloud, this may reach to 1KB. This can be used as a general guide to determine how much data to buy from a network operator.

Studies show there is a potential for over 50% water savings using sensor-based irrigation scheduling methods.

What the future holds

Many startup companies are currently focused on the software aspect of IoT, and their products lack the sensor technology. The main problem they have is that developing good sensors is hard. Most of these companies will fail before batteries of their sensors die. Few will survive or prevail in the very competitive IoT market. Larger companies who own sensor technologies are more concerned with the compatibility and interoperability of these IoT technologies and will be hesitant to adopt them until they have a clear picture. It is going to take time to see both IoT and accurate soil/plant sensors in one package in the market.  

With the rapid growth of IoT in other areas, there will be an opportunity to evaluate different IoT technologies before adopting them in agriculture. As a company, you may be forced to choose specific IoT technology. Growers and consultants should not worry about what solution is employed to transfer data from their field to the cloud and to their computer or smart phones, as long as quality data is collected and costs and services are reasonable. Currently, some companies are using traditional cellular networks. It is highly likely that they will finally switch to cellular IoT like LTE Cat-M1. This, however, may potentially increase the costs in some designs due to the higher cost of cellular IoT data plans.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more info on applied environmental research in our

IoT Technologies for Irrigation Water Management

Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, discusses where and why IoT fits into irrigation water management. In addition, he explores possible price, range, power, and infrastructure road blocks.

Wireless sensor networks collect detailed data on plants in areas of the field that behave differently.

Studies show there is a potential for water savings of over 50% with sensor-based irrigation scheduling methods. Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and a reasonable cost. Wireless sensor networks can collect data on plants in a lot of detail in areas of the field that behave differently. The need for wireless sensors and actuators has led to the development of IoT (Internet of Things) solutions referred to as Low-Power Wide-Area Networking or LPWAN. IoT simply means wireless communication and connecting to some data management system for further analysis. LPWAN technologies are intended to connect low-cost, low-power sensors to cloud-based services. Today, there are a wide range of wireless and IoT connectivity solutions available raising the question of which LPWAN technology best suits the application?

IoT Irrigation Management Scenarios

The following are scenarios for implementing IoT:

  1. buying a sensor that is going to connect to a wireless network that you own (i.e., customer supplied like Wi-Fi, Bluetooth),
  2. buying the infrastructure or at least pieces of it to install onsite (i.e., vendor managed LPWAN such as LoRaWAN, Symphony Link), and
  3. relying on the infrastructure from a network operator LPWAN (e.g., LTE Cat-M1, NB-IOT, Sigfox, Ingenu, LoRWAN).

This is how cellular network operators or cellular IoT works. LPWAN technology fits well into agricultural settings where sensors need to send small data over a wide area while relying on batteries for many years. This distinguishes LPWAN from Bluetooth, ZigBee, or traditional cellular networks with limited range and higher power requirements. However, like any emerging technology, certain limitations still exist with LPWAN.

Individual weather and soil moisture sensor subscription fees in cellular IoT may add up and make it very expensive where many sensors are needed.

IoT Strengths and Limitations

The average data rate in cellular IoT can be 20 times faster than LoRa or Symphony Link, making it ideal for applications that require higher data rates. LTE Cat-M1 (aka LTE-M), for example, is like a Ferrari in terms of speed compared to other IoT technologies. At the same time, sensor data usage is the most important driver of the cost in using cellular IoT. Individual sensor subscription fee in cellular IoT may add up and make it very expensive where many sensors are needed. This means using existing wireless technologies like traditional cellular or ZigBee to complement LPWAN. One-to-many architecture is a common approach with respect to wireless communication and can help save the most money. Existing wireless technologies like Bluetooth LE, WiFi or ZigBee can be exploited to collect in-field data. In this case, data could be transmitted in-and-out of the field through existing communication infrastructure like a traditional cellular network (e.g., 3G, 4G) or LAN. Alternatively, private or public LPWAN solutions such as LoRaWAN gateways or cellular IoT can be used to push data to the cloud. Combination of Bluetooth, radio or WiFi with cellular IoT means you will have fewer bills to pay. It is anticipated that, with more integrations, the IoT market will mature, and costs will drop further.

Many of LPWAN technologies currently have a very limited network coverage in the U.S. LTE Cat-M1 by far has the largest coverage. Ingenu, which is a legacy technology, Sigfox and NB-IOT have very limited U.S. coverage. Some private companies are currently using subscription-free, crowd-funded LoRaWAN networks to provide service to U.S. growers: however, with a very limited network footprint. Currently, cellular IoT does not perform well in rural areas without strong cellular data coverage.

In two weeks: Dr. Osroosh continues to discuss IoT strengths and limitations in part 2.

Download the “Researcher’s complete guide to soil moisture”—>

Get more info on applied environmental research in our

Lab vs. field instruments—when to use both

Whether researchers measure soil hydraulic properties in the lab or in the field, they’re only getting part of the picture. Laboratory systems are highly accurate due to controlled conditions, but lab measurements don’t take into account site variability such as roots, cracks, or wormholes that might affect soil hydrology. In addition, when researchers take a sample from the field to the lab, they often compress soil macropores during the sampling process, altering the hydraulic properties of the soil.

Field sensors

Roots, cracks, and wormholes all affect soil hydrology

Field experiments help researchers understand variability and real-time conditions, but they have the opposite set of problems. The field is an uncontrolled system. Water moves through the soil profile by evaporation, plant uptake, capillary rise, or deep drainage, requiring many measurements at different depths and locations. Field researchers also have to deal with the unpredictability of the weather. Precipitation may cause a field drydown experiment to take an entire summer, whereas in the lab it takes only a week.

The big picture—supersized

Researchers who use both lab and field techniques while understanding each method’s strengths and limitations can exponentially increase their understanding of what’s happening in the soil profile. For example, in the laboratory, a researcher might use the PARIO soil texture analyzer to obtain accurate soil texture data, including a complete particle size distribution. They could then combine those data with a HYPROP-generated soil moisture release curve to understand the hydraulic properties of that soil type. If that researcher then adds high-quality field data in order to understand real-world field conditions, then suddenly they’re seeing the larger picture.

Field instruments

Table 1. Lab and field instrument strengths and limitations

Below is an exploration of lab versus field instrumentation and how researchers can combine these instruments for an increased understanding of their soil profile. Click the links for more in-depth information about each topic.

Particle size distribution and why it matters

Soil type and particle size analysis are the first window into the soil and its unique characteristics. Every researcher should identify the type of soil that they’re working with in order to benchmark their data.

Field instruments

Particle size analysis defines the percentage of coarse to fine material that makes up a soil

If researchers don’t understand their soil type, they can’t make assumptions about the state of soil water based on soil moisture (i.e., if they work with plants, they won’t be able to predict whether there will be plant available water). In addition, differing soil types in the soil’s horizons may influence a researcher’s measurement selection, sensor choice, and sensor placement.

Read more

Download the “Researcher’s complete guide to soil moisture”—>

Top Five Blog Posts in 2017

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2017.

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Soil moisture sensor

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system. Read more

Get More From your NDVI Sensor

Modern technology has made it possible to sample Normalized Difference Vegetation Index (NDVI) across a range of scales both in space and in time, from satellites sampling the entire earth’s surface to handheld small sensors that measure individual plants or even leaves.  Read more

Improved Methods Save Money in Future Borehole Thermal Energy Storage Design

Globally, the gap between the energy production and consumption is growing wider. To promote sustainability, University of California San Diego PhD candidate and ASCE GI Sustainability in Geotechnical Engineering committee member, Tugce Baser, Dr. John McCartney, Associate Professor, and their research team, Dr. Ning Lu, Professor at Colorado School of Mines and Dr. Yi Dong, Postdoctoral Researcher at Colorado School of Mines, are working on improving methods for borehole thermal energy storage (BTES), a system which stores solar heat in the soil during the summer months for reuse in homes during the winter. Read more

New Weather Station Technology in Africa

Weather data, used for flight safety, disaster relief, crop and property insurance, and emergency services, contributes over $30 billion in direct value to U.S. consumers annually. Since the 1990’s in Africa, however, there’s been a consistent decline in the availability of weather observations. Read more

Electrical Conductivity of Soil as a Predictor of Plant Response

Plants require nutrients to grow, and if we fail to supply the proper nutrients in the proper concentrations, plant function is affected. Fertilizer in too high concentration can also affect plant function, and sometimes is fatal.  Read more

And our three most popular blogs of all time:

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more

How to Measure Water Potential

In the conclusion of our three-part water potential series, we discuss how to measure water potential—different methods, their strengths, and their limitations. Read more

Do the Standards for Field Capacity and Permanent Wilting Point Need to be Reexamined?

We were inspired by this Freakonomics podcast, which highlights the bookThis Idea Must Die: Scientific Problems that are Blocking Progress, to come up with our own answers to the question:  Which scientific ideas are ready for retirement?  We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point. Read more

Get info on applied environmental research in our

See performance data for the ATMOS 41 weather station.

Download the “Researcher’s complete guide to soil moisture”—>