Skip to content

Posts from the ‘All in one weather station’ Category

Engineers Without Borders alleviates Panamanian village water security issues

Engineers Without Borders (EWB) at Washington State University in Pullman, WA has partnered with a small indigenous village located in the Comarca Ngäbe-Buglé region of Panama. The relationship between this village and EWB at WSU began in 2016 when WSU alumna Destry Seiler began living in the village as a Peace Corps volunteer hoping to help solve the community’s water security needs.

A view of the Comarca Ngäbe-Buglé taken from the village in Panama.

During the rainy season in this village, approximately 20 households have access to water through a two-inch PVC pipe that operates by gravity. It runs approximately 1.5 kilometers through the jungle from a spring source higher in the mountain to small hose spickets located close to the homes on the distribution line. The other ~80 households do not have access to the distribution line and walk to the closest river or creek up to five times a day to find water. However, during the dry season, most spring sources dry up, leaving all households in the community to walk to the diminished supply of rivers to find their water.

A view of the water line currently serving ~20 homes in the village during the rainy season.

The village initially requested assistance from the Peace Corps in order to find a year-round source of clean water. But, after living in the village for 1.5 years, Ms. Seiler could not locate spring sources that both survived through the dry season and could also reach the homes in need through a gravity fed system.

Then Ms. Seiler began thinking of groundwater as a possible new water source for the community. Unfortunately, groundwater data for the Comarca Ngäbe-Buglé was not available from the local government agency. So she decided to reach out to WSU professor, Dr. Karl Olsen, to ask for assistance with a groundwater research project, and the EWB club was formed.

The club visited the village for the first time along with Ms. Seiler and faculty mentor Dr. Karl Olsen in August 2018 to do an initial survey of water use and needs, as well as to create a first-ever map of the area. EWB will return to Panama this June 2019 to implement a solar-powered water pump requested by a section of the community to deliver water from a spring source to approximately 20 homes on the nearest ridgeline. The club will also install latrines in a nearby community. They will continue the groundwater survey of the area through more extensive mapping and perform a more advanced analysis with the support of a local hydrologic company.

EWB members and WSU students Patrick Roubicaud, Kristy Watson, Destry Seiler, Perri Piller, Rene McMinn, and Kevin Allen during their visit to Panama, August 2018.

The team will use a METER-donated ATMOS 41 weather station along with a ZL6 data logger and ZENTRA Cloud software to assist in the data collection necessary to begin mapping groundwater in the area. The weather station will record precipitation, solar radiation, vapor pressure, temperature, wind, and relative humidity data that will enable EWB to begin to quantify environmental conditions and available water supply. When combined with streamflow data from rivers in the area, groundwater availability can also begin to be estimated. Because of ZENTRA Cloud, EWB will be able to view this information near-real time as well as share it with the village to help guide their design decisions. EWB plans to install the ATMOS 41 at a nearby village school to ensure weather station security and to provide an opportunity for local students to learn about their surrounding environment in a way they have not been able to do before.

To learn more about the Panamanian village or the work EWB from WSU is doing, visit ewb.wsu.edu.

Why mesonets make weather prediction more accurate

The staggering cost of Montana’s “flash drought”

Some people figured it was climate change. One statistician said it was a part of a cyclical trend for poor crop years. Whatever the cause, the 2017 flash drought that parched the entire state of Montana and most of South Dakota, severely impacted the profitability of ranchers and farmers. In western Montana, fires burned some of the largest acreages in recent history. It resulted in one of the biggest wildfire incident reports (over one-million acres) and caused virtually 100% crop loss in northeastern Montana. The U.S. Dept. of Agriculture estimated the crop loss to be in the hundreds of millions of dollars, and one question was on everybody’s mind—why did no one see it coming?

Figure 1. Montana drought conditions August 2017 (Source: Montana State Library website: https://mslservices.mt.gov/Geographic_Information/Maps/drought/)

Getting the right weather data

The 2017 Montana Dept. of Natural Resources and Conservation spring drought report indicated plenty of water: “By the end of the month, almost all drought concern was removed from the state, with the exception of Wibaux and Fallon Counties….As of May 9, 2017, Montana was 98.45% drought free.” But in late May, an abrupt shift in weather conditions led to one of the hottest, driest summers on record.

The problem, says Kevin Hyde, Montana State Mesonet Coordinator, lies not only in the need for more weather data but in obtaining the right kind of data. He says, “One of the reasons drought was missed was because we’re still thinking you measure drought by snowpack and how much water is in the river, which is really great if you’ve got water rights. But we’ve got a lot of dryland out there.”

In addition to weather monitoring, Hyde is a big proponent of adding soil moisture and NDVI measurements to each of the Montana Mesonet stations he oversees. He says, “The conventional weather station only measures atmospheric conditions. But ultimately, to make any decisions, we’ve got to know not just how much water comes into the system, but how much goes into the soil. And even that’s not enough…because what we really need to know is how the water situation is going to affect plants.”

Hyde says more data are needed to warn growers and ranchers about upcoming weather risks. He points to the fact that increasing evapotranspiration got missed leading up to the summer of 2017. “We realized that if we were looking carefully at reference ET, we might have seen it about a month earlier. What would people have done? They would have changed their calf purchases. They would have figured out what kind of forage they needed to buy. These are the types of decisions people can make if they know the information sooner.”

Was the drought over? Soil moisture illuminates the bigger picture

Heavy rains came mid-September of 2017, which led some people to believe the drought was over. However, changes in soil moisture told a different story. Very little of the rain made it into the soil. “At the Havre, MT station you can see we had some heavy precipitation events. Then we had early October snows. So people expected good soil water recharge. But at the end of the day, we didn’t get it. On Sept.15th, soil moisture sensors showed a big soil moisture response at the surface but only a marginal response at 8 inches.” The melt of early October snows onto the soil, still damp from the September rain, drained to 20 inches or more. But as the snowmelt dissipated, there was minimal net gain going into the winter.

Figure 2. Soil moisture traces at the Havre, MT weather station

Predictive models need more coverage to be effective

Typically in the U.S., the National Weather Service (a division of NOAA) puts out a network of weather monitoring stations spaced out across the country, and that data gets fed into forward-looking models that help predict the weather. Dr. Doug Cobos, research scientist at METER says, “What people are finding out is that putting in a sparse network of very expensive systems has done really well. It’s been a good thing. But the spatial gaps in those networks are a problem, especially for agriculture producers and ranchers. They need to know what’s happening where they are.”

Hyde agrees, adding that we need better predictive tools that help growers and ranchers make practical decisions based on data rather than guessing. “January 1st is when the decision has to be made—do I buy cows? Do I sell cows? Do I need more pasture? But many predictions start on April 1st. As one rancher puts it, ‘We don’t bother with Las Vegas. We sit around the dining room table at the beginning of the year and put a million dollars on one shot.’”

Mesonets improve spatial distribution

Mesonets present a practical solution for the need to fill in data gaps between large, complex weather stations. The Montana Mesonet currently has 57 stations interspersed throughout the state, and through partnerships with both the public and private sector, they’re adding more stations every year.

Figure 3. Map of MT Mesonet weather stations (source: http://climate.umt.edu/mesonet/)

At each location, the Montana Mesonet team installs METER all-in-one weather stations, soil moisture sensors, NDVI sensors and data loggers that integrate with ZENTRA Cloud: an easy-to-use web software that seamlessly integrates into third-party applications through an API. He says the system enables better spatial distribution and reliability. “When we were deciding on equipment we asked ourselves: What kind of technology should we use? It had to provide high data integrity. It had to be easy to deploy and maintain. And it had to be cost effective. There’s not a lot of people in that sector. METER systems are low profile, they’re affordable, and the reliability is there. I look at some other mesonets, and they cannot afford to build out further because they are relying on large, complex, expensive systems. That’s where the METER system comes into play.”

Figure 4. Montana Mesonet station setup (Photo credit: Kevin Hyde)

Betting on the future

The Mesonet team and its partners are excited to see how their data will mesh with the available predictive tools to be the most useful and practical for growers and ranchers throughout the state, and they realize that there is still much work to do. “It’s not enough just to get the instrumentation out there. The overall crux is: how do we build the information network, and how do we build a relationship with the producers so that we can have an iterative and interactive conversation?” says Hyde. “We know there needs to be an education in how to use and interpret the data. For example: what is NDVI, and what can we learn from it? A lot of what we need to do is translate science into practical terms.” But he adds that it doesn’t need to be perfect. “What the farmers have said to us is, ‘We don’t need exact numbers. We’re gamblers. Give us probability. Teach us what it means, and we’ll make the decision.’”

Find more information on the Montana Mesonet here.

Just released: ATMOS 41 comparison testing data

Climate parameters such as precipitation, air temperature, and wind speed can change considerably across short distances in the natural environment. However, most weather observations either sacrifice spatial resolution for scientific accuracy or research-grade accuracy for spatial resolution.

weather station

ATMOS 41 all-in-one weather station

The ATMOS 41 represents an optimization of both. It was carefully engineered to maximize accuracy at a price point that allows for spatially distributed observations. Additionally, because many researchers need to avoid frequent maintenance and long setup times, the ATMOS 41 was designed to reduce complexity and withstand long-term deployment in harsh environments. To eliminate breakage, it contains no moving parts, and it only requires recalibration every two years. Since all 14 measurements are combined in a single unit, it can be deployed quickly and with almost no effort. Its only requirement is to be mounted and leveled on top of a pole with an unobstructed view of the sky.

Comparison testing and sensor-to-sensor variability data

METER released the ATMOS 41 in January 2017 after extensive development and testing with partnerships across the world, in Africa, Europe, and the US. We performed comparison testing with high-quality, research-grade non-METER sensors and conducted time-series testing for sensor-to-sensor variability.

See the results

 

 

IoT Technologies for Irrigation Water Management (Part 2)

Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, continues (see part 1) to discuss the strengths and limitations of  IoT technologies for irrigation water management.

Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and a reasonable cost.

LoRaWAN (a vendor-managed solution see part 1) is ideal for monitoring applications where sensors need to send data only a couple of times per day with very high battery life at very low cost. Cellular IoT, on the other hand, works best for agricultural applications where sensors are required to send data more frequently and irrigation valves need to be turned on/off. Low-Power Wide-Area Networking (LPWAN) technologies need gateways or base stations for functioning. The gateway uploads data to a cloud server through traditional cellular networks like 4G. Symphony Link has an architecture very similar to LoRaWAN with higher degree of reliability appropriate for industrial applications. The power budget of LTE Cat-M1 9 (a network operator LPWAN) is 30% higher per bit than technologies like SigFox or LoRaWAN, which means more expensive batteries are required. Some IoT technologies like LoRa and SigFox only support uplink suited for monitoring while cellular IoT allows for both monitoring and control. LTE-M is a better option for agricultural weather and soil moisture sensor applications where more data usage is expected.

NB-IoT is more popular in EU and China and LTE Cat-M1 in the U.S. and Japan. T-Mobile is planning to deploy NB-IoT network in the U.S. by mid-2018 following a pilot project in Las Vegas. Verizon and AT&T launched LTE Cat-M1 networks last year and their IoT-specific data plans are available for purchase. Verizon and AT&T IoT networks cover a much greater area than LoRa or Sigfox. An IoT device can be connected to AT&T’s network for close to $1.00 per month, and to Verizon’s for as low as $2 per month for 1MB of data. A typical sensor message generally falls into 10-200 bytes range. With the overhead associated with protocols to send the data to the cloud, this may reach to 1KB. This can be used as a general guide to determine how much data to buy from a network operator.

Studies show there is a potential for over 50% water savings using sensor-based irrigation scheduling methods.

What the future holds

Many startup companies are currently focused on the software aspect of IoT, and their products lack the sensor technology. The main problem they have is that developing good sensors is hard. Most of these companies will fail before batteries of their sensors die. Few will survive or prevail in the very competitive IoT market. Larger companies who own sensor technologies are more concerned with the compatibility and interoperability of these IoT technologies and will be hesitant to adopt them until they have a clear picture. It is going to take time to see both IoT and accurate soil/plant sensors in one package in the market.  

With the rapid growth of IoT in other areas, there will be an opportunity to evaluate different IoT technologies before adopting them in agriculture. As a company, you may be forced to choose specific IoT technology. Growers and consultants should not worry about what solution is employed to transfer data from their field to the cloud and to their computer or smart phones, as long as quality data is collected and costs and services are reasonable. Currently, some companies are using traditional cellular networks. It is highly likely that they will finally switch to cellular IoT like LTE Cat-M1. This, however, may potentially increase the costs in some designs due to the higher cost of cellular IoT data plans.

Get more info on applied environmental research in our

Stop Hiding Behind a Shield

Get better air temperature accuracy with this new method

Accurate air temperature is crucial for microclimate monitoring

The accuracy of air temperature measurement in microclimate monitoring is crucial because the quality of so many other measurements depend on it. But accurate air temperature is more complicated than it looks, and higher accuracy costs money. Most people know if you expose an air temperature sensor to the sun, the resulting radiative heating will introduce large errors. So how can the economical ATMOS 41’s new, non-radiation-shielded air temperature sensor technology be more accurate than typical radiation-shielded sensors?

We performed a series of tests to see how the ATMOS 41’s air temperature measurement compared to other sensors, and the results were surprising, even to us. Learn the results of our experiments and the new science behind the extraordinary accuracy of the ATMOS 41’s breakthrough air temperature sensor technology.

In this brief 30-minute webinar, find out:

  • Why you should care about air temperature accuracy
  • Where errors in air temperature measurement originate
  • The first principles energy balance equation and why it matters
  • Results of experiments comparing shielded sensor accuracy against the ATMOS 41
  • The science behind the ATMOS 41 and why its unshielded measurement actually works

 

Where Will the Next Generation of Scientists Come From?

The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international science and education program that provides students and the public worldwide with the opportunity to participate in data collection and the scientific process.

GLOBE

GLOBE has a huge impact in schools around the world.

Its mission is to promote the teaching and learning of science, enhance community environmental literacy and stewardship, and provide research quality environmental observations.  The GLOBE program works closely with agencies such as NASA to do projects like validation of SMAP data and the Urban Heat Island/Surface Temperature Student Research Campaign.  The figure below shows the impact GLOBE is having in schools worldwide.

Dixon Butler, former GLOBE Chief Scientist, is excited about the recent African project GLOBE is now participating in called the TAHMO project.  He says, “Right now, in Kenya and Nigeria, GLOBE schools are putting in over 100 new  mini-weather stations to collect weather data, and all that usable data will flow into the GLOBE database.”

GLOBE

Participating in real science at a young age gets youth more ready to be logical, reasoning adults.

Why Use Kids to Collect Data?

Dixon says kids do a pretty good job taking research quality environmental measurements.  Working with agencies like NASA gets them excited about science, and participating in real science at a young age gets them more ready to be logical, reasoning adults.  He explains, “The 21st century requires a scientifically literate citizenry equipped to make well-reasoned choices about the complex and rapidly changing world. The path to acquiring this type of literacy goes beyond memorizing scientific facts and conducting previously documented laboratory experiments to acquiring scientific habits of mind through doing hands-on, observational science.”

Dixon says when GLOBE started, the plan was to have the kids measure temperature.  But one science teacher, Barry Rock, who had third-grade students using Landsat images to do ozone damage observations, called the White House and said, “Kids can do a lot more than measure temperature.” He gave a presentation at the White House where he showed a video of two third grade girls looking at Landsat imagery. They were discussing their tree data, and at one point, one said to the other, ‘That’s in the visible. Let’s look at it in the false color infrared.’  At that point, Barry became the first chief scientist of GLOBE, and he helped set up the science and the protocols that got the program started.

GLOBE

GLOBE uses online and in-person training and protocols to be sure the students’ data is research quality.

Can GLOBE Data be Used by Scientists?

GLOBE uses online and in-person training and protocols to be sure the students’ data is research quality.  Dixon explains, “There was a concern that these data be credible, so the idea was to create an intellectual chain of custody where scientists would write the protocols in partnership with an educator so they would be written in an educationally appropriate way.  Then the teachers would be trained on those protocols. The whole purpose is to be sure scientists have confidence that the data being collected by GLOBE is usable in research.”

Today GLOBE puts out a Teacher’s’ Guide and the protocols have increased from 17 to 56.  The soil area went from just a temperature and moisture measurement to a full characterization.  Dixon says, “We’ve been trying to improve it ever since, and I think we’re getting pretty good at it.”  

GLOBE

GLOBE students were the only ones going around looking up at the sky doing visual categorization of clouds and counting contrails. It was just no longer being done, except by these students.

What About the Skeptics?

If you ask Dixon how he deals with skeptics of the data collected by the kids, he says, “I tell them to take a scientific approach.  Check out the data, and see if they’re good.  One year, a GLOBE investigator found a systematic error In U-tube maximum/minimum thermometers mounted vertically, which had been in use for over a century, that no one else found. The GLOBE data were good enough to look at and find the problem.  There are things the data are good for and things they’re not good for. Initially, we wanted these data to be used by scientists in the literature, and there have been close to a dozen papers, but I would argue that GLOBE hasn’t yet gotten to the critical mass of data that would make that easier.”

GLOBE did have enough cloud data, however, to be used in an important analysis of geostationary cloud data where the scientist compared GLOBE student data with satellite data Dixon adds, “GLOBE students were the only ones going around looking up at the sky doing visual categorization of clouds and counting contrails. It was just no longer being done, except by GlOBE students. Now GLOBE has developed the GLOBE Observer app that lets everyone take and report cloud observations.”

GLOBE

Young minds need to experience the scientific approach of developing hypotheses, taking careful, reproducible measurements, and reasoning with data.

What’s the Future of GLOBE?

Dixon says GLOBE’s goal is to raise the next generation of intelligent constituents in the body politic. He says, “I thought about this a lot when I worked for the US Congress.  In addition to working with GLOBE, I now have a non-profit grant-making organization called YLACES with the objective of helping kids to learn science by doing science.  Young minds need to experience the scientific approach of developing hypotheses, taking careful, reproducible measurements, and reasoning with data. Inquiries should begin early and grow in quality and sophistication as learners progress in literacy, numeracy, and understanding scientific concepts. In addition to fostering critical thinking skills, active engagement in scientific research at an early age also builds skills in mathematics and communications. These kids will grow up knowing how to think scientifically. They’ll ask better questions, and they’ll be harder to fool.   I think that’s what the world needs, and I see the environment and science as the easiest path to get there.”

Learn more about GLOBE and its database here and about YLACES at www.ylaces.org.

Get more information on applied environmental research in our

New Weather Station Technology in Africa-3

The Trans African Hydro and Meteorological Observatory (TAHMO) project expects to put 20,000 microenvironment monitors over Africa in order to understand the weather patterns which affect that continent, its water, and its agriculture. In the conclusion of our 3-part series, we interview Dr. John Selker about his thoughts on the project.

TAHMO

The economics of weather data value may be going up because we’re reaching a cusp in terms of humanity’s consumption of food.

In your TEDx talk you estimate that US weather stations directly bring U.S. consumers  31 billion dollars in value per year. Can Africa see that same kind of return?

Even more.  The economics of weather data value may be going up because we’re reaching a cusp in terms of humanity’s consumption of food.  Africa, one could argue, is the breadbasket for this coming century.  Thus, the value of information about where we could grow what food could be astronomical.  It’s very difficult to estimate.  One application of weather data is crop insurance.  Right now, crop insurance is taking off across Africa. The company we’re working with has 180,000 clients just in Kenya.  When we talked about 31 billion dollars in the U.S., that is the value citizens report, but you need to add to that protection against floods, increased food production, water supply management, crop insurance and a myriad of other basic uses for weather data.  In Africa, the value of this type of protection alone pays for over 1,000 times the cost of the weather stations.

Another application for weather data is that in Africa, the valuation of land itself is uncertain. So if, because of weather station data, we find that a particular microclimate is highly valuable, suddenly land goes from having essentially no value to becoming worth thousands of dollars per acre.  It’s really difficult to estimate the impact the data will have, but it could very well end up being worth trillions of dollars.  We have seen this pattern take place in central Chile, where land went from about $200/hectare in 1998 to over $3,000/ha now due to the understanding that it was exceptionally suited to growing pine trees, which represented a change in land value exceeding $3 billion.

Does the effect of these weather stations go beyond Africa?

There’s limited water falling on the earth, and if you can’t use weather data to invest in the right seeds, the right fertilizer, and plant at the right time in the right place, you’re not getting the benefit you should from having tilled the soil.  So for Africa the opportunity to improve yields with these new data is phenomenal.  

In terms of the world, the global market for calories is now here, so if we can generate more food production in Africa, that’s going to affect the price and availability of food around the world.  The world is one food community at this point, so an entire continent having inefficient production and ineffective structures costs us all.

TAHMO

If we can generate more food production in Africa, that’s going to affect the price and availability of food around the world.

You’re collecting data from Africa. Is it time to celebrate yet?

I think this is going to be one of those projects where we are always chilling the champagne and never quite drinking it.  It is such a huge scope trying to work across a continent.  So I would say we’ve got some stations all over Africa, we’re learning a lot, and we’ve got collaborators who are excited.  We have reason to feel optimistic.  It will be another five years before I’ll believe that we have a datastream that is monumental.  Right now we’re still getting the groundwork taken care of.  By September of this year we expect to have five hundred of stations in place, and then two years from now, over two thousand. This will be a level of observation that will transform the understanding of African weather and climate.

TAHMO

This is a project of hundreds of people across the world putting their hands and hearts in to make this possible.

How do you deal with the long wait for results?  

In science, there is that sense you get when you want to know something, and you can see how to get there.  You have a theory, and you want to prove it.  It kind of captures your imagination.  It’s a combination of curiosity and the potential to actually see something happen in the world: to go from a place where you didn’t know what was going on to a place where you do know what’s going on.  I think about Linus Pauling, who made the early discoveries about the double helix.  He had in his pocket the X-ray crystallography data to show that the protein of life was in helical form, and he said, “In my pocket, I have what’s going to change the world.”  When we realized the feasibility of TAHMO, we felt much the same way.”  

Sometimes in your mind, you can see that path: how you might change the world.  It may never be as dramatic as what Pauling did, but even a small contribution has that same excitement of wanting to be someone who added to the conversation, who added to our ability to live more gracefully in the world.  It’s that feeling that carries you along, because in most of these projects you have an idea, and then ten years later you say, “why was it that hard?”  

Things are usually much harder than your original conception, and that energy and curiosity really helps you through some of the low points in your projects.  So, curiosity has a huge influence on scientific progress.  Changing the world is always difficult, but the excitement, curiosity, and working with people, it all fits together to help us draw through the tough slogs.  In TAHMO, I cannot count the number of people who have urged us to keep the effort moving forward and given a lift just when we needed it most.  This is a project of hundreds of people across the world putting their hands and hearts in to make this possible.  Having these TAHMO supporters is an awesome responsibility and concrete proof of the generosity and optimism of the human spirit.

Learn how you can help TAHMO.

New Weather Station Technology in Africa (Part 2)

Weather data improve the lives of many people. But, there are still parts of the globe, such as Africa, where weather monitoring doesn’t exist (see part 1). John Selker and his partners intend to remedy the problem through the Trans African Hydro Meteorological Observatory (TAHMO).  Below are some challenges they face.

weather station

TAHMO aims to deploy 20,000 weather stations across the continent of Africa in order to fill a hole that exists in global climate data.

Big Data, Big Governments, and Big Unknowns

Going from an absence of data to the goal of 20,000 weather stations offers hope for positive changes. However, Selker is still cautious. “Unintended consequences are richly expressed in the history of Africa, and we worry about that a lot. It’s an interesting socio-technical problem.”  This is why Selker and others at TAHMO are asking how they can bring this technology to Africa in a way that fits with their cultures, independence, and the autonomy they want to maintain. 

TAHMO works with the government in each country stations are deployed in; negotiating agreements and making sure the desires of each recipient country are met. Even with agreements in place, the officials in each country will do what is in the best interest of the people: a gamble in countries where corruption is a factor which must be addressed. Selker illustrates this point by recalling an instance in 1985 when he witnessed a corrupt government official take an African farmer’s land because the value had increased due to a farm-scale water development project.

Most TAHMO weather stations are hosted and maintained by a local school, making it available as an education tool for teachers to use to teach about climate and weather. Data from TAHMO are freely available to the government in the country where the weather station is hosted, researchers who directly request data, and to the school hosting and maintaining the weather station. Commercial organizations will be able to purchase the data, and the profits will be used to maintain and expand the infrastructure of TAHMO.

weather station

Selker says it’s all about collaboration.

Terrorism, Data, and Open Doors

“When I wanted to go out and put in weather stations, my wife said, ‘No, you will not go to Chad.’ … because it is Boko Haram central,” Selker says.

The Boko Haram— a terrorist organization that has pledged allegiance to ISIS— creates an uncommon hurdle. Currently, the Boko Haram is most active in Nigeria, but has made attacks in Chad, Cameroon, and Niger.

Selker also mentioned similar issues with ISIS, “When ISIS came through Mali, the first thing they did is destroy all the weather stations. So they have no weather data right now in Mali.” Acknowledging the need for security, he adds, “we’re  completing the installation of  eight stations [in Mali] in April.”

“We have good contacts [in Nigeria] and they’re working hard to get permission to put up stations right now in that area. We’ve shipped 15 stations which are ready to install. With these areas we can’t go visit, it’s all about collaboration. It’s about partners and people you know. We have a partnership with a tremendous group of Africans who are really the leading edge of this whole thing.”

weather station

Most TAHMO weather stations are hosted and maintained by a local school.

A Hopeful Future

Despite the challenges of getting this large-scale research network off the ground, Selker and his group remain hopeful.  About his weather data he says, “It’s not glamorous stuff, you won’t see it on the cover of magazines, but these are the underpinnings of a successful society.”

Selker optimistically adds, “We are in a time of incredible opportunity.”

Learn more about TAHMO

Next Week:  Read an interview with Dr. John Selker on his thoughts about TAHMO.

New Weather Station Technology in Africa

Weather data, used for flight safety, disaster relief, crop and property insurance, and emergency services, contributes over $30 billion in direct value to U.S. consumers annually. Since the 1990’s in Africa, however, there’s been a consistent decline in the availability of weather observations. Most weather stations are costly and require highly trained individuals to maintain. As a result, weather stations in African countries have steadily declined over the last seventy years. Oregon State University’s, Dr. John Selker and his partners intend to remedy the problem through his latest endeavor— the Trans African Hydro Meteorological Observatory (TAHMO).

weather stations

Weather data improve the lives of many people. But, there are still parts of the globe where weather monitoring doesn’t exist.

Origins of TAHMO

TAHMO is a research-based organization that aims to deploy 20,000 weather stations across the continent of Africa in order to fill a hole that exists in global climate data. TAHMO originated from a conversation between Selker and Dr. Nick van de Giesen from Delft University of Technology while doing research in Ghana. Having completed an elaborate study on canopy interception at a cocoa plantation in 2006, they hit a “data wall.” There was virtually no weather data available in Ghana, a problem shared by most African countries. This opened the door to what would later become TAHMO.

weather stations

The majority of weather stations are being installed at local schools where teachers are using the data in their classroom lessons.

Logistics and Equipment

Originally Selker and van de Geisen set out to make a $100 weather station, which Selker admitted, “turned out to be harder than we thought.” Not only was making a widely-deployable, affordable, research-grade, no-moving-parts weather station difficult, but additional challenges presented themselves.

“The model of how we might measure the weather in Africa, the whole business model, the production model, infrastructure support, the database and delivery system, the agreements with the countries, agreements with potential data-buyers, that all took us a long time to sort out.” Despite these challenges, in 2010 it started to look feasible. “That’s when we really started to figure out what the technology we were going to use was going to look like.”

After giving a lecture at Washington State University, Selker spoke with Dr. Gaylon Campbell about the project, which led to a long development-deployment-development cycle. Eventually, the final product emerged as a low-maintenance, no-moving-parts, cellular-enabled, solar-powered weather station.

weather stations

An estimated 60 percent of the African population earn their income by farming.

Agricultural Benefits of Weather Stations

Crop insurance, a service that is widely used in developed countries, relies on weather data. Once historical data exists, insurance rates can be set, and farmers can purchase crop insurance to replace a crop that is lost to drought, weather, wildfire, etc. On a continent with the largest percentage of the total population subsistence farming, this empowers farmers to take larger risks. Without insurance, farmers need to conserve seed, saving enough to eat and plant again if a crop fails. With crop insurance, crop loss is not as devastating, and farmers can produce larger yields without worrying about losing everything. Hypothetically, this would lead to more food available to the global market, stabilizing food prices year over year.

Crop insurance aside, weather data provide growers with information like when to plant, when not to plant, what crops to plant, and when and if to treat for disease. For rainfed crops, this can mean the difference between a successful yield and a failure.

“Currently in most African countries, the production per acre is about one-sixth of that in the United States. That is the biggest opportunity, in my opinion, for sustainable growth without having to open up new tracts of land. The land is already under cultivation, but we can up productivity, probably by a factor of four, by giving information about when to plant,” Selker comments.  

Despite the social benefits, Selker makes it clear that the TAHMO effort is based on mutual benefit: “We are here for a reason, we want these data to advance our research on global climate processes.  This is a global win-win partnership.”

Learn how you can help TAHMO by getting active.

Next week:  Read about some of the challenges facing TAHMO

Should We Replace “Wind Chill Factor”?

In a continuation of our series, based on this book, which discusses scientific ideas that need to be reexamined, Dr.’s Doug Cobos and Colin Campbell make a case for standard operative temperature to replace wind chill factor:

Currently, the forecast is based on air temperature and wind chill. What the forecast leaves out is the effect of radiation.

Currently, the forecast is based on air temperature and wind chill. What the forecast leaves out is the effect of radiation.

What are we looking for when we look at a weather forecast?  We want to know how we’re going to feel and what we need to wear when we go outside. Currently, the forecast is based on air temperature and wind chill, which are a major part of the picture, but not all of it.  What the forecast leaves out is the effect of radiation.  If you go out on a cold, sunny day, you’re going to be warmer than you would be at that same temperature and wind speed on a  cloudy day.  It’s not going to feel the same.  So why not replace wind chill with the more accurate measurement of standard operative temperature?

Where wind chill came from:

In 1969, a scientist named Landsberg created a chart showing how people feel at a certain air temperature and wind speed. His chart was based on work by Paul Siple and Charles Passel.  But, Siple and Passel’s work was done in Antarctica using a covered bottle of water under the assumption that you were wearing the thickest coat ever made.  The table was updated in 2001 to improve its accuracy, but since the coat thickness assumption remained unchanged it underestimates the chill that you feel. It also explicitly leaves out radiation, assuming the worst case scenario of a clear night sky. The controversy is detailed in this NY Times article from several years ago.

wind chill

Siple and Passel’s work was done in Antarctica using a covered bottle of water under the assumption a person was wearing the thickest coat ever made.

During the winter, forecasters use air temperature and wind chill with no radiation component.  In the summertime, they use an index that takes into account the temperature and the humidity called the heat index.  But again, there is no accounting for radiation. Our families deal with this all the time when we take the kids out fishing in early spring. Before we leave, we’ll check the weather report for temperature and wind chill.  But is it going to be sunny or cloudy?  That’s key information. You can see the radiation effect in action when a cloud drifts in front of the sun.  All the kids scramble for their jackets because the perceived temperature has changed.  This is something that none of the indices actually capture.

Understanding the concept:

Standard operative temperature combines the effects of radiation and wind speed to give a more complete understanding of how you will feel outside.  It is a simple energy balance: the amount of energy coming in from the sun and metabolism minus the amount of energy going out through heat and vapor loss. Using this relationship and adding in the heat and vapor conductances, the temperature that we might “feel” can be graphed against the solar zenith angle at a fixed air temperature. For reference, the sun is directly overhead when the zenith angle is 0 degrees and at the horizon at 90 degrees.

Figure: Wind chill and standard operative temperature with respect to sun angle for two wind speeds (1 and 10 m/s) at an air temperature of -50 C.

Figure: Wind chill and standard operative temperature with respect to sun angle for two wind speeds (1 and 10 m/s) at an air temperature of -5 degrees C.

What’s interesting is that on a clear day when the sun is around 45 degrees (typical for around noon in the winter) and the temperature is -5 degrees C, if the wind is blowing at 1 m/s, you would feel a temperature of 6 degrees C (relatively warm). The wind chill predicts the feel at -6 degrees C, a huge difference in comfort.  This difference decreases with increasing wind speed as you’d expect, but even for the same conditions and wind at 10 m/s, the 45-degree sun angle creates a temperature feel 7 degrees C higher than the wind chill.  Although not huge, this makes a considerable difference in perceived comfort.

What do we do now?

The interesting thing is that all the tools to measure radiation are there.  Most weather stations have a pyranometer that measures solar radiation, and some of them even measure longwave radiation, which can also be estimated within reasonable bounds. This means forecasters have all the tools to report the standard operative temperature, which is the actual temperature that you feel.  Why not incorporate standard operative temperature into each forecast? Using standard operative temperature we could have the right number, so we’d know exactly what to wear at any given time.   It’s an easy equation, and forecast websites could use it to report a “comfort index” or comfort operative temperature that will tell us exactly how we’ll feel when we go outside.

 

Which scientific ideas do you think need to be reexamined?

Get more information on applied environmental research in our