Skip to content

Posts from the ‘Soils’ Category

Improved Methods Save Money in Future Borehole Thermal Energy Storage Design

Globally, the gap between the energy production and consumption is growing wider. To promote sustainability, University of California San Diego PhD candidate and ASCE GI Sustainability in Geotechnical Engineering committee member, Tugce Baser, Dr. John McCartney, Associate Professor, and their research team, Dr. Ning Lu, Professor at Colorado School of Mines and Dr. Yi Dong, Postdoctoral Researcher at Colorado School of Mines, are working on improving methods for borehole thermal energy storage (BTES), a system which stores solar heat in the soil during the summer months for reuse in homes during the winter. Baser says, “We are running out of finite energy resources. We need to come up with new strategies to use free and renewable energy resources such as solar energy for a sustainable future.”

borehole thermal energy storage

Baser’s BTES design.

How it works

BTES systems are an approach to provide efficient renewable resource-based thermal energy to heat buildings. They are configured to store thermal energy collected from solar thermal panels during the summer and discharge the heat to buildings during the winter. They function by circulating a fluid within a closed-loop pipe network installed in vertical boreholes to inject heat collected from solar thermal panels. During winter, cold fluid is circulated through the heat exchangers to recover the heat from the subsurface and distribute it to the buildings. Baser explains, “The subsurface provides an excellent medium to store this heat due to the relatively lower thermal conductivity and lower specific heat capacity especially when the soil layer is in the vadose zone. Lower thermal properties allow us to concentrate the heat in a specific array and the heat losses to the environment are potentially low. These systems typically include an insulation layer and a hydraulic barrier near the ground surface to reduce heat and vapor losses to the atmosphere.”

borehole thermal energy storage

BTES construction.

Why do we need improved methods?

Baser and her team are trying to improve the understanding of heat storage mechanisms and evaluate changes in the rate of heat transfer and heat storage in the vadose zone where the soil is unsaturated. The goal of the project is improve conventional methods by generating models to fit different soil types and situations.  She says, “The European community introduced us to the borehole thermal energy storage systems to provide heat specifically for domestic use, but there is still a chance for us to design them more efficiently by having a full understanding of the thermal response of these systems that is specific to the ground material and subsurface conditions. The primary objective of this research is to understand the mechanisms of coupled heat transfer and water flow in unsaturated soil profiles during the heat injection and subsequent heat extraction into these different arrays and different dimensions of borehole heat exchangers.”

borehole thermal energy storage

Solar panels.

Baser and her team working on designing numerical models based on finite element method which improve some of the numerical models in the literature used to characterize the thermal response of the systems. The new models add new considerations, such as the heat pipe effect in different soil types. Baser explains, “Because thermal and hydraulic properties of soils are highly coupled and are specific to soils, the thermal response of a BTES system will be different when it is installed in different types of soils. For example, you see the heat pipe effect where there is evaporation and subsequent condensation in fine grained soils rather than coarse soils because in coarse grain soils the pore characteristics are different. The duration of the heat pipe effect (or convective cycle) is longer in fine grain soils. We conclude that considering coupled heat transfer and water flow in the thermal response of Borehole Thermal Energy Storage system is important.”

borehole thermal energy storage

In-ground heat exchanger

Experiments in the field and in the lab help verify the new models

To fully understand heat transfer mechanisms and water flow in unsaturated soils, the research team installed two different SBTS systems at different scales, one in Golden, Colorado School of Mines campus, and the other at the UC San Diego research campus.  Baser says, “The subsurface characteristics of both sites are different, and this gives us the opportunity to investigate the impact of the different soil layers on the thermal response experimentally in a full scale. In addition, the scales of each Borehole Thermal Energy Storage system are different, and we also apply different heat injection rates. We have used these data to further validate our coupled heat transfer and water flow model so that we can use it for design purposes.”

borehole thermal energy storage

Soil moisture sensor locations.

Baser started with laboratory heating experiments, in which soil in a large tank is heated by heat exchangers. She installed soil moisture sensors to measure volumetric water content and the temperature and then used the KD2 pro thermal property analyzer to monitor thermal properties during heating experiments to characterize the coupled thermo-hydraulic relationships. For the field experiments the team uses soil moisture sensors equipped with temperature sensors and the KD2 pro to monitor subsurface temperature fluctuation because during the summertime the air temperature is higher, thus ambient air temperature fluctuation and penetration may become significant.

Baser also uses thermistor strings that include six thermistors at different depths and thermistor pipe plugs, voltage input modules, and flow meters.  She says, “Thermistor pipe plugs and flow meters are used in the manifold to monitor the inlet and outlet fluid temperatures and flow rates in each loop to calculate heat transfer rate into the ground. Flow meters were installed to control flow in each loop because you don’t want to over or underload the borehole loops. The amount of energy that you collect from the solar loop and the amount of energy that you inject into the ground can be used to define the efficiency of the system.” Baser says thermistor strings help monitor the ground temperature during the summer heat loading at different depths. They’re also used to monitor borehole wall temperature over time. The team installed one thermistor string 9 meters away from the heat storage array to see if far field is affected by the heat transfer within the array.

borehole thermal energy storage

Insulation prevents heat loss to the environment.

The new models will save money in future Borehole Thermal Energy Storage design

Baser says building numerical models and solving them was very complicated and time consuming, but they’ve had good results. She explains, “We’ve recently proved, both experimentally and numerically, that considering coupled thermal and hydraulic relationships are very important for thermal response analysis. Thus, our recommendation is that it’s fine to use the analytical models and user-friendly numerical models that consider constant thermal properties in the design analyses for saturated soils. However, in unsaturated soils, there is a very high possibility that the contribution of heat transfer evaporation and condensation would be missing and the Borehole Thermal Energy Storage system would be oversized, costing a significant amount of money. When dealing with soils in the vadose zone, coupled thermo-hydraulic constitutive relationships in the modeling efforts need to be considered.”

You can learn more about Tugce Baser’s research here.

Get more information on applied environmental research in our

 

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system.

TDR vs. Capacitance

TDR began as a technology the power industry used to determine the distance to a break in broken power lines.

Clarke Topp

In the late 1970s, Clarke Topp and two colleagues began working with a technology the power industry used to determine the distance to a break in broken power lines.  Time Domain Reflectometers (TDR) generated a voltage pulse which traveled down a cable, reflected from the end, and returned to the transmitter. The time required for the pulse to travel to the end of the cable directed repair crews to the correct trouble spot. The travel time depended on the distance to the break where the voltage was reflected, but also on the dielectric constant of the cable environment.  Topp realized that water has a high dielectric constant (80) compared to soil minerals (4) and air (1).  If bare conductors were buried in soil and the travel time measured with the TDR, he could determine the dielectric constant of the soil, and from that, its water content.  He was thus able to correlate the time it took for an electromagnetic pulse to travel the length of steel sensor rods inserted into the soil to volumetric water content. Despite his colleagues’ skepticism, he proved that the measurement was consistent for several soil types.

TDR vs. Capacitance

TDR sensors consume a lot of power. They may require solar panels and larger batteries for permanent installations.

TDR Technology is Accurate, but Costly

In the years since Topp et al.’s (1980) seminal paper, TDR probes have proven to be accurate for measuring water content in many soils. So why doesn’t everyone use them? The main reason is that these systems are expensive, limiting the number of measurements that can be made across a field. In addition, TDR systems can be complex, and setting them up and maintaining them can be difficult.  Finally, TDR sensors consume a lot of power.  They may require solar panels and larger batteries for permanent installations. Still TDR has great qualities that make these types of sensors a good choice.  For one thing, the reading is almost independent of electrical conductivity (EC) until the soil becomes salty enough to absorb the reflection.  For another, the probes themselves contain no electronics and are therefore good for long-term monitoring installations since the electronics are not buried and can be accessed for servicing, as needed.  Probes can be multiplexed, so several relatively inexpensive probes can be read by one set of expensive electronics, reducing cost for installations requiring multiple probes.

Many modern capacitance sensors use high frequencies to minimize effects of soil salinity on readings.

Advances in Electronics Enable Capacitance Technology

Dielectric constant of soil can also be measured by making the soil the dielectric in a capacitor.  One could use parallel plates, as in a conventional capacitor, but the measurement can also be made in the fringe field around steel sensor rods, similar to those used for TDR.  The fact that capacitance of soil varies with water content was known well before Topp and colleagues did their experiments with TDR.  So, why did the first attempt at capacitance technology fail, while TDR technology succeeded? It all comes down to the frequency at which the measurements are made.  The voltage pulse used for TDR has a very fast rise time.  It contains a range of frequencies, but the main ones are around 500 MHz to 1 GHz.  At this high frequency, the salinity of the soil does not affect the measurement in soils capable of growing most plants.  

Like TDR, capacitance sensors use a voltage source to produce an electromagnetic field between metal electrodes (usually stainless steel), but instead of a pulse traveling down the rods, positive and negative charges are briefly applied to them. The charge stored is measured and related to volumetric water content. Scientists soon realized that how quickly the electromagnetic field was charged and discharged was critical to success.  Low frequencies led to large soil salinity effects on the readings.  This new understanding, combined with advances in the speed of electronics, meant the original capacitance approach could be resurrected. Many modern capacitance sensors use high frequencies to minimize effects of soil salinity on readings.  

TDR vs. Capacitance

NASA used capacitance technology to measure water content on Mars.

Capacitance Today is Highly Accurate

With this frequency increase, most capacitance sensors available on the market show good accuracy. In addition, the circuitry in them can be designed to resolve extremely small changes in volumetric water content, so much so, that NASA used capacitance technology to measure water content on Mars. Capacitance sensors are lower cost because they don’t require a lot of circuitry, allowing more measurements per dollar. Like TDR, capacitance sensors are reasonably easy to install. The measurement prongs tend to be shorter than TDR probes so they can be less difficult to insert into a hole. Capacitance sensors also tend to have lower energy requirements and may last for years in the field powered by a small battery pack in a data logger.   

In two weeks: Learn about challenges facing both types of technology and why the question of TDR vs. Capacitance may not be the right question.

Get more information on applied environmental research in our

Where Will the Next Generation of Scientists Come From?

The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international science and education program that provides students and the public worldwide with the opportunity to participate in data collection and the scientific process.

GLOBE

GLOBE has a huge impact in schools around the world.

Its mission is to promote the teaching and learning of science, enhance community environmental literacy and stewardship, and provide research quality environmental observations.  The GLOBE program works closely with agencies such as NASA to do projects like validation of SMAP data and the Urban Heat Island/Surface Temperature Student Research Campaign.  The figure below shows the impact GLOBE is having in schools worldwide.

Dixon Butler, former GLOBE Chief Scientist, is excited about the recent African project GLOBE is now participating in called the TAHMO project.  He says, “Right now, in Kenya and Nigeria, GLOBE schools are putting in over 100 new  mini-weather stations to collect weather data, and all that usable data will flow into the GLOBE database.”

GLOBE

Participating in real science at a young age gets youth more ready to be logical, reasoning adults.

Why Use Kids to Collect Data?

Dixon says kids do a pretty good job taking research quality environmental measurements.  Working with agencies like NASA gets them excited about science, and participating in real science at a young age gets them more ready to be logical, reasoning adults.  He explains, “The 21st century requires a scientifically literate citizenry equipped to make well-reasoned choices about the complex and rapidly changing world. The path to acquiring this type of literacy goes beyond memorizing scientific facts and conducting previously documented laboratory experiments to acquiring scientific habits of mind through doing hands-on, observational science.”

Dixon says when GLOBE started, the plan was to have the kids measure temperature.  But one science teacher, Barry Rock, who had third grade students using Landsat images to do ozone damage observations, called the White House and said, “Kids can do a lot more than measure temperature.” He gave a presentation at the White House where he showed a video of two third grade girls looking at Landsat imagery. They were discussing their tree data, and at one point, one said to the other, ‘That’s in the visible. Let’s look at it in the false color infrared.’  At that point, Barry became the first chief scientist of GLOBE, and he helped set up the science and the protocols that got the program started.

GLOBE

GLOBE uses online and in-person training and protocols to be sure the students’ data is research quality.

Can GLOBE Data be Used by Scientists?

GLOBE uses online and in-person training and protocols to be sure the students’ data is research quality.  Dixon explains, “There was a concern that these data be credible, so the idea was to create an intellectual chain of custody where scientists would write the protocols in partnership with an educator so they would be written in an educationally appropriate way.  Then the teachers would be trained on those protocols. The whole purpose is to be sure scientists have confidence that the data being collected by GLOBE is useable in research.”

Today GLOBE puts out a Teacher’s’ Guide and the protocols have increased from 17 to 56.  The soil area went from just a temperature and moisture measurement to a full characterization.  Dixon says, “We’ve been trying to improve it ever since, and I think we’re getting pretty good at it.”  

GLOBE

GLOBE students were the only ones going around looking up at the sky doing visual categorization of clouds and counting contrails. It was just no longer being done, except by these students.

What About the Skeptics?

If you ask Dixon how he deals with skeptics of the data collected by the kids, he says, “I tell them to take a scientific approach.  Check out the data, and see if they’re good.  One year, a GLOBE investigator found a systematic error In U-tube maximum/minimum thermometers mounted vertically, which had been in use for over a century, that no one else found. The GLOBE data were good enough to look at and find the problem.  There are things the data are good for and things they’re not good for. Initially, we wanted these data to be used by scientists in the literature, and there have been close to a dozen papers, but I would argue that GLOBE hasn’t yet gotten to the critical mass of data that would make that easier.”

GLOBE did have enough cloud data, however, to be used in an important analysis of geostationary cloud data where the scientist compared GLOBE student data with satellite data Dixon adds, “GLOBE students were the only ones going around looking up at the sky doing visual categorization of clouds and counting contrails. It was just no longer being done, except by GlOBE students. Now GLOBE has developed the GLOBE Observer app that let’s everyone take and report cloud observations.”

GLOBE

Young minds need to experience the scientific approach of developing hypotheses, taking careful, reproducible measurements, and reasoning with data.

What’s the Future of GLOBE?

Dixon says GLOBE’s goal is to raise the next generation of intelligent constituents in the body politic. He says, “I thought about this a lot when I worked for the US Congress.  In addition to working with GLOBE, I now have a non-profit grant-making organization called YLACES with the objective of helping kids to learn science by doing science.  Young minds need to experience the scientific approach of developing hypotheses, taking careful, reproducible measurements, and reasoning with data. Inquiries should begin early and grow in quality and sophistication as learners progress in literacy, numeracy, and understanding scientific concepts. In addition to fostering critical thinking skills, active engagement in scientific research at an early age also builds skills in mathematics and communications. These kids will grow up knowing how to think scientifically. They’ll ask better questions, and they’ll be harder to fool.   I think that’s what the world needs, and I see the environment and science as the easiest path to get there.”

Learn more about GLOBE and its database here and about YLACES at www.ylaces.org.

Get more information on applied environmental research in our

Best Research Instrument Hacks

Sometimes, brilliant ideas are born out of necessity.  We wanted to highlight innovative ways people have modified their instrumentation to fit their research needs.  Here, Georg von Unold, founder and president of UMS (now METER) illustrates ingenuity in a story that inspired the invention of the first UMS tensiometer and what could be one of the greatest scientific instrument hacks of all time.

Instrument hacks

The Bavarian Alps

An Early Penchant for Ingenuity

In 1986, graduating German students were required to join the military or perform civil service.  Von Unold chose to do a civil service project investigating tree mortality in the alpine region of the Bavarian Mountains.  He explains, “We were trying to understand pine tree water stress in a forest decline study related to storms in certain altitudes where trees were inexplicably falling over. The hypothesis was that changing precipitation patterns had induced water stress.”  

To investigate the problem, von Unold’s research team needed to find tensiometers that could measure the water stress of plants in the soil, which was not easy. The tensiometers von Unold found were not able to reach the required water potential without cavitating, so he decided to design a new type of tensiometer.  He says, “I showed my former boss the critical points. It must be glued perfectly, the ceramic needed defined porosity, a reliable air reference access, and water protection of the pressure transducer. I explained it with a transparent acrylic glass prototype to make it easier to understand. At a certain point my boss said, “Okay, please stop. I don’t understand much about these things, but you can make those on your own.”

Instrument hacks

Two snorkels protected a data logger predecessor from relative humidity.

Snorkels Solve a Research Crisis

The research team used those tensiometers (along with other chemical and microbial monitoring) to investigate why trees only in the precise altitude of 800 to 1100 meters were dying. One challenge facing the team was that they didn’t have access to anything we might call a data logger today.  Von Unold says, “We did have a big process machine from Schlumberger that could record the sensors, but it wasn’t designed to be placed in alpine regions where maximum winter temperatures reached -30℃ or below. We had to figure out how to protect this extremely expensive machine, which back then cost more than my annual salary.“

Von Unold’s advisor let him use the machine, cautioning him that the humidity it was exposed to could not exceed 80%, and the temperature must not fall below 0℃.  As von Unold pondered how to do this, he had an idea. Since the forest floor often accumulated more than a meter of snow, he designed an aluminum box with two snorkels that would reach above the snow.  The snorkels were guided to a height of two meters.  Using these air vents, he sucked a small amount of cold, dry air into the box. Then, he took his mother’s hot iron, bought a terminal switch to replace the existing one (so it turned on in the range of 0-30℃), and mounted a large aluminum plate on the iron’s metal plate to better distribute the heat.

Von Unold says, “Pulling in the outside air and heating it worked well. The simple technique reduced the relative humidity and controlled the temperature inside the box. Looking back, we were fortunate there wasn’t condensing water and that we’d selected a proper fan and hot iron. We didn’t succeed entirely, as on hot summer days it was a bit moist inside the box, but luckily, the circuit boards took no damage.”

Instrument hacks

Tree mortality factors were only found at the precise altitude where fog accumulated.

Finding Answers

Interestingly, the research team discovered there was more to the forest decline story than they thought. Fog interception in this range was extremely high, and when it condensed on the needles, the trees absorbed more than moisture.  Von Unold explains, “In those days people of the Czech Republic and former East Germany burned a lot of brown coal for heat. The high load of sulphur dioxide from the coal reduced frost resistivity and damaged the strength of the trees, producing water stress.  These combined factors were only found at the precise altitude where the fog accumulated, and the weakened trees were no match for the intense storms that are sometimes found in the Alps.”  Von Unold says once the East German countries became more industrialized, the problem resolved itself because the people stopped burning brown coal.

Share Your Hacks with Us

Do you have an instrument hack that might benefit other scientists?  Send your idea to kcampbell@metergroup.com.

New Infiltrometer Helps City of Pittsburgh Limit Traditional Stormwater Infrastructure (Part 2)

To save the aesthetics of Dellrose Street, an aging, 900 ft. long, brick road, the city of Pittsburgh wanted to limit traditional stormwater infrastructure (see part 1). Jason Borne, a stormwater engineer for ms consultants and his team decided permeable pavers was a viable option, and used two different types of infiltrometers to determine soil infiltration potential.  Here’s how they compared.

double ring infiltrometer

Setting up the infiltrometers.

Shortened Test Times Allow Design Changes on the Fly

Though most of the subsoil was a clay urban fill, there was a distinct transition between that clay material to a broken shale/clay mixture.  Borne says, “After excavation, it rained, and we saw that the water was disappearing through the broken shale/clay material.  When we did the infiltration tests, the broken shale/clay showed a higher infiltration potential than the clay fill material.  That led us to modify the design of the subsurface flow barriers based on specific observed infiltration rates of the subsoils. Where the tests showed higher hydraulic conductivity values, we were able to rely on infiltration entirely to remove the water from behind the check dams.”  Borne adds that in the areas where infiltration was poor, they augmented infiltration with a slow release concept. “We put some weep holes in the flow barrier and let the water trickle out down to the next barrier and so on.  Basically, the automated SATURO infiltrometer allowed us to do many tests in a short amount of time to establish a threshold of where good infiltrating soils and poor infiltrating soils were located.  This enabled us to change the design on the fly.  The double ring infiltrometer takes significantly more time to do a test, and time is of the essence when the contractor wants to backfill the area and get things moving. It was nice to have a tool that got us the information we needed more rapidly.”

double ring infiltrometer

SATURO Infiltrometer

How did the Double Ring and SATURO Compare?

Borne says the SATURO Infiltrometer was faster and reduced the possibility of human error.  He adds, “We liked the idea of it being very standardized. The automated plot of flux over time was also of great interest to us, because we could see a trend, or anomalies that might invalidate the results we were getting. The double ring infiltrometer takes a long time to achieve a state of equilibrium, and it’s hard to know when that occurs. You’re following the Pennsylvania Department of Environmental Protection suggested guidelines, but they’re very generalized.  To me it doesn’t suit all situations.  What we found with the SATURO infiltrometer is it records information at very discreet intervals, plots a curve of the flux over time, and when it levels out, you basically achieve equilibrium.  You get to that state of equilibrium faster.  There’s a water savings, but there’s also a time savings.  And there’s the satisfaction of getting standardized results rather than the possibility of each technician applying the principles in a slightly different way, as they might with the double ring infiltrometer.”

Borne and his team were ultimately able to prepare a permeable paver street design which allowed for the exclusion of traditional storm sewer infrastructure, reducing both capital costs and long-term maintenance life cycle costs. The permeable paver concept is intended to provide a template for the city of Pittsburgh to apply to the future reconstruction of other city streets.

Get more information on applied environmental research in our

New Infiltrometer Helps City of Pittsburgh Limit Traditional Stormwater Infrastructure

Though difficult and expensive to repair, the brick-paved streets that still exist in some Pittsburgh, Pennsylvania neighborhoods are worth saving. Dellrose Street, an aging, 900 ft. long, brick road, was in need of repair, but the city of Pittsburgh wanted to limit traditional stormwater infrastructure, such as pipes and catch basins.

Infiltrometer

Dellrose Street permeable paver system

To save the aesthetics of the neighborhood, they hired ms consultants, inc. to design a permeable paver solution for controlling stormwater runoff volumes and peak runoff rates that would traditionally be routed off-site via storm sewers.  Jason Borne, a stormwater engineer for ms consultants who worked on the project says, “What we try to do is understand the in situ infiltration potential of the subsoils to determine the most efficient natural processes for attenuating flows; either through infiltrating excess water volume back into the soil or through slow-release off-site.”  He used the SATURO Infiltrometer to get an idea of how urban fill material would infiltrate water.

Green Infrastructure Aids Natural Infiltration

As Borne and his team investigated what they could do to slow down the runoff, they decided permeable pavers would be a viable solution.  He says, “There’s not much you can do once you put in a hardened surface like a pavement.  Traditional pavement surfaces accelerate the runoff which requires catch basins and large diameter pipes to carry the runoff off-site. We were interested in investigating what some of the urban subsoils, or urban fill would allow us to do from an infiltration perspective.  As we started looking at some of these subsoils, we decided a permeable paver system would be ideal for this particular street.”

Infiltrometer

Subsurface flow barrier installation

Infiltrometers Determine Natural Infiltration Potential

Once the water flowed into the aggregate, the team began to figure out ways to slow it down and promote infiltration.  Borne says, “Basically we came up with a tiered subsurface flow barrier system.  We had about 60 concrete flow barriers across the subgrade within the aggregate base of the road. We needed so many because the longitudinal slope of the road was fairly significant. Behind each of these barriers we stored a portion of the stormwater that would typically run off the site.  The ideal was to remove the stored water through infiltration–to get it down to the subgrade and away, so we used infiltrometers to help us establish where we could maximize infiltration and where we might need to rely on other management methods.”

A Need for Faster Test Times Inspires a Comparison

Borne says that USDA soil surveys are too generalized for green infrastructure applications in urban areas and only give crude approximations of the soil hydraulic conductivity. Understanding the best way to promote natural infiltration requires a very specific infiltration rate or hydraulic conductivity for the location of interest.  He says, “The goal is to excavate down to the desired elevation before construction and find out, through some kind of device what the infiltration potential of the subsoil is.  Typically we use a double ring infiltrometer, but it’s a very manual device. We’re constantly refilling water, and it requires us to be on-site and attentive to what’s happening.  We can’t really multitask, especially in areas of decently infiltrating soils where the device might run out of water in 30 minutes or less. So, in the interest of saving water and time, we used the automated SATURO infiltrometer and the manual double ring infiltrometer concurrently for comparison purposes.”

Next week:  Find out how the two infiltrometers compared.

Get more information on applied environmental research in our

German Researchers Directly Measure Climate Change Effects Using Lysimeter Network (part 2)

In Germany, scientists are measuring the effects of tomorrow’s climate change with a vast network of 144 large lysimeters (see part 1).  This week, read about the intense precision required to move the soil-filled lysimeters, how problems are prevented, and how the data is used by scientists worldwide.

climate change

Moving the lysimeters

Moving the Lysimeters is not Easy

As noted previously, one TERENO lysimeter weighs between 2.5 and 3.5 tons depending on the soil and the water saturation, so the problem of  transporting it without compacting the soil or causing cracks in the soil column caused Georg many sleepless nights.   He explains, “We found a truck with an air venting system, which could prevent vibrations in a wide range. We made a wooden support structure, bought 100 car springs, and loaded the lysimeter on this frame.  After some careful preparation and design adjustments, I told the truck driver, ‘take care, I’m recording the entire drive with my acceleration sensor and data logger so I can see if you are driving faster than I allow.”  Each lysimeter soil surface level was marked to check if the lysimeter was rendered useless due to transport, and the truck was not allowed to go over a railway or a bump in the road faster than 2 km per hour to avoid the consequences of compaction and cracking.

climate change

Tensiometers and soil moisture sensors monitor the hydraulic conditions inside the lysimeters.

Preventing Problems

Understanding the water potential inside the intact lysimeter core is not trivial. Georg and his team use maintenance-free tensiometers, which overcome the typical problem of cavitation in dry conditions as they don’t need to be refilled. Still, this parameter is so critical they installed 3 of them and took the median, which can be weighed in case one of the sensors is not working. Georg says, “There is a robust algorithm behind measuring the true field situation with tensiometers.”

What Happens With the Data?

Georg hopes that many researchers will take advantage of the TERENO lysimeter network data (about 4,000 parameters stored near-continuously on a web server). He says, “Researchers have free access to the data and can publish it. It’s wonderful because it’s not only the biggest project of its kind, each site is well-maintained, and all measurements are made with the same equipment, so you can compare all the data.”  (Contact Dr. Thomas Puetz for access). Right now, over 400 researchers are working with those data, which has been used in over 200 papers.

climate change

Lysimeter plant with CO2 fumigation facility in Austria.

What’s the Future?

Georg thinks 40,000 data points arriving every minute will give scientists plenty of information to work on for years to come. Each year, more TERENO standard lysimeters are installed to enlarge the database. The ones in TERENO have a 1 m2 surface area, which is fine for smaller plants like wheat or grass, but is not a good dimension for big plants like trees and shrubs. Georg points out that you have to take into account effort versus good data. Larger lysimeters present exponentially larger challenges. He admits that, “With the TERENO project, they had to make a compromise. All the lysimeters are cut at a depth of 1.5 m. If there is a mistake, it is the same with all the lysimeters, so we can compare on climate change effects.”  He adds, “After six years, we now have a standard TERENO lysimeter design installed over 200 times around the world, where data can be compared through a database, enhancing our understanding of water in an era of climate change.”

Get more information on applied environmental research in our

German Researchers Directly Measure Climate Change Effects Using TERENO Lysimeters

In Germany, scientists are measuring the effects of tomorrow’s climate change with a vast network of 144 large lysimeters.

lysimeters

The goal of these lysimeters is to measure energy balance, water flux and nutrition transport, emission of greenhouse gases, biodiversity, and solute leaching into the groundwater.

In 2008, the Karlsruhe Institute of Technology began to develop a climate feedback monitoring strategy at the Ammer catchment in Southern Bavaria. In 2009, the Research Centre Juelich Institute of Agrosphere, in partnership with the Helmholtz-Network TERENO (Terrestrial Environmental Observatories) began conducting experiments in an expanded approach.  

Throughout Germany, they set up a network of 144 large lysimeters with soil columns from various climatic conditions at sites where climate change may have the largest impact.  In order to directly observe the effects of simulated climate change, soil columns were taken from higher altitudes with lower temperatures to sites at a lower altitude with higher temperatures and vice versa. Extreme events such as heavy rain or intense drought were also experimentally simulated.

lysimeters

Lysimeter locations in Germany

Georg von Unold, whose company (formerly UMS, now METER) built and installed the lysimeters comments on why the project is so important. “From a scientific perspective, we accept changes for whatever reason they may happen, but it is our responsibility to carefully monitor and predict how these changes cause floods, droughts, and disease. We need to be prepared to react if and before they affect us.”

How Big Are the Lysimeters?

Georg says that each lysimeter holds approximately 3,000 kilograms of soil and has to be moved under compaction control with specialized truck techniques.  He adds,The goal of these lysimeters is to measure energy balance, water flux and nutrition transport, emission of greenhouse gases, biodiversity, and solute leaching into the groundwater. Researchers measure the conditions of water balance in the natural soil surrounding the lysimeters, and then apply those same conditions inside the lysimeters with suction ceramic cups that lay across the bottom of the lysimeter.  These cups both inject and take out water to mimic natural or artificial conditions.”

lysimeters

Researchers use water content sensors and tensiometers to monitor hydraulic conditions inside the lysimeters.

Researchers monitor the new climate situation with microenvironment monitors and count the various grass species to see which types become dominant and which might disappear. They use water content sensors and tensiometers to monitor hydraulic conditions inside the lysimeters. The systems also use a newly-designed system to inject CO2 into the atmosphere around the plants and soil to study increased carbon effects.  Georg says, “We developed, in cooperation with the HBLFA Raumberg Gumpenstein, a new, fast-responding CO2 enrichment system to study CO2 from plants and soil respiration. We analyze gases like CO2, oxygen, and methane. The chambers are rotated from one lysimeter to another, working 24 hours, 7 days a week.  Each lysimeter is exposed only for a few minutes so as not to change the natural environment.”

Next week:  Read about the intense precision required to move the soil-filled lysimeters, how problems are prevented, and how the data is used by scientists worldwide.

Get more information on applied environmental research in our

Top Five Blog Posts in 2016

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2016.

Lysimeters Determine if Human Waste Composting can be More Efficient

Top five blog posts Environmental biophysics

In Haiti, untreated human waste contaminating urban areas and water sources has led to widespread waterborne illness.  Sustainable Organic Integrated Livelihoods (SOIL) has been working to turn human waste into a resource for nutrient management by turning solid waste into compost.  Read more

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Top five blog posts Environmental biophysics

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity  from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more.

How Many Soil Moisture Sensors Do You Need?

Top five blog posts Environmental biophysics

“How many soil moisture sensors do I need?” is a question that we get from time to time. Fortunately, this is a topic that has received substantial attention by the research community over the past several years. So, we decided to consult the recent literature for insights. Here is what we learned.

Data loggers: To Bury, or Not To Bury

Top five blog posts Environmental biophysics

Globally, the number one reason for data loggers to fail is flooding. Yet, scientists continue to try to find ways to bury their data loggers to avoid constantly removing them for cultivation, spraying, and harvest.  Chris Chambers, head of Sales and Support at Decagon Devices always advises against it. Read more

Founders of Environmental Biophysics:  Champ Tanner

Top five blog posts Environmental biophysics

Image: http://soils.wisc.edu/people/history/champ-tanner/

We interviewed Gaylon Campbell, Ph.D. about his association with one of the founders of environmental biophysics, Champ Tanner.  Read more

And our three most popular blogs of all time:

Do the Standards for Field Capacity and Permanent Wilting Point Need to Be Reexamined?

Top five blog posts Environmental biophysics

We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point.  Read more

Environmental Biophysics Lectures

Top five blog posts Environmental biophysics

During a recent semester at Washington State University a film crew recorded all of the lectures given in the Environmental Biophysics course. The videos from each Environmental Biophysics lecture are posted here for your viewing and educational pleasure.  Read more

Soil Moisture Sensors In a Tree?

Top five blog posts Environmental biophysics

Soil moisture sensors belong in the soil. Unless, of course you are feeling creative, curious, or bored. Then maybe the crazy idea strikes you that if soil moisture sensors measure water content in the soil, why couldn’t they be used to measure water content in a tree?  Read more

Get more information on applied environmental research in our

How to Measure Water Potential

In the conclusion of our 3-part water potential  series (see part 1), we discuss how to measure water potential–different methods, their strengths, and their limitations.

How to measure water potential

Vapor pressure methods work in the dry range.

How to measure water potential

Essentially, there are only two primary measurement methods for water potential—tensiometers and vapor pressure methods. Tensiometers work in the wet range—special tensiometers that retard the boiling point of water (UMS) have a range from 0 to about -0.2 MPa. Vapor pressure methods work in the dry range—from about -0.1 MPa to -300 MPa (0.1 MPa is 99.93% RH; -300 MPa is 11%).

Historically, these ranges did not overlap, but recent advances in tensiometer and temperature sensing technology have changed that. Now, a skilled user with excellent methods and the best equipment can measure the full water potential range in the lab.   

There are reasons to look at secondary measurement methods, though. Vapor pressure methods are not useful in situ, and the accuracy of the tensiometer must be paid for with constant, careful maintenance (although a self-filling version of the tensiometer is available).

Here, we briefly cover the strengths and limitations of each method.

Vapor Pressure Methods:

The WP4C Dew Point Hygrometer is one of the few commercially available instruments that currently uses this technique. Like traditional thermocouple psychrometers, the dew point hygrometer equilibrates a sample in a sealed chamber.

How to Measure Water Potential

WP4C Dew Point Hygrometer

A small mirror in the chamber is chilled until dew just starts to form on it. At the dew point, the WP4C measures both mirror and sample temperatures with 0.001◦C accuracy to determine the relative humidity of the vapor above the sample.

Advantages

The most current version of this dew point hygrometer has an accuracy of ±1% from -5 to -300 MPa and is also relatively easy to use. Many sample types can be analyzed in five to ten minutes, although wet samples take longer.

Limitations

At high water potentials, the temperature differences between saturated vapor pressure and the vapor pressure inside the sample chamber become vanishingly small.

Limitations to the resolution of the temperature measurement mean that vapor pressure methods will probably never supplant tensiometers.

The dew point hygrometer has a range of -0.1 to -300 MPa, though readings can be made beyond -0.1 MPa using special techniques. Tensiometers remain the best option for readings in the 0 to-0.1 MPa range.

Secondary Methods

Water content tends to be easier to measure than water potential, and since the two values are related, it’s possible to use a water content measurement to find water potential.

A graph showing how water potential changes as water is adsorbed into and desorbed from a specific soil matrix is called a moisture characteristic or a moisture release curve.

download

Example of a moisture release curve.

Every matrix that can hold water has a unique moisture characteristic, as unique and distinctive as a fingerprint. In soils, even small differences in composition and texture have a significant effect on the moisture characteristic.

Some researchers develop a moisture characteristic for a specific soil type and use that characteristic to determine water potential from water content readings. Matric potential sensors take a simpler approach by taking advantage of the second law of thermodynamics.

Matric Potential Sensors

Matric potential sensors use a porous material with known moisture characteristic. Because all energy systems tend toward equilibrium, the porous material will come to water potential equilibrium with the soil around it.

Using the moisture characteristic for the porous material, you can then measure the water content of the porous material and determine the water potential of both the porous material and the surrounding soil. Matric potential sensors use a variety of porous materials and several different methods for determining water content.

Accuracy Depends on Custom Calibration

At its best, matric potential sensors have good but not excellent accuracy. At its worst, the method can only tell you whether the soil is getting wetter or drier. A sensor’s accuracy depends on the quality of the moisture characteristic developed for the porous material and the uniformity of the material used. For good accuracy, the specific material used should be calibrated using a primary measurement method. The sensitivity of this method depends on how fast water content changes as water potential changes. Precision is determined by the quality of the moisture content measurement.

Accuracy can also be affected by temperature sensitivity. This method relies on isothermal conditions, which can be difficult to achieve. Differences in temperature between the sensor and the soil can cause significant errors.

Limited Range

All matric potential sensors are limited by hydraulic conductivity: as the soil gets drier, the porous material takes longer to equilibrate. The change in water content also becomes small and difficult to measure. On the wet end, the sensor’s range is limited by the air entry potential of the porous material being used.

Tensiometers and Traditional Methods

Read about the strengths and limitations of tensiometers and other traditional methods such as gypsum blocks, pressure plates, and filter paper at waterpotential.com

Get more information on applied environmental research in our

%d bloggers like this: