Skip to content

Best Research Instrument Hacks

We wanted to highlight innovative ways people have modified their instrumentation to fit their research needs.  Here, Georg von Unold, founder and president of UMS (now METER) illustrates ingenuity in a story that inspired the invention of the first UMS tensiometer and what could be one of the greatest scientific instrument hacks of all time.

Image of the Bavarian Alps with snow on top

The Bavarian Alps

An Early Penchant for Ingenuity

In 1986, graduating German students were required to join the military or perform civil service.  Von Unold chose to do a civil service project investigating tree mortality in the alpine region of the Bavarian Mountains.  He explains, “We were trying to understand pine tree water stress in a forest decline study related to storms in certain altitudes where trees were inexplicably falling over. The hypothesis was that changing precipitation patterns had induced water stress.”  

To investigate the problem, von Unold’s research team needed to find tensiometers that could measure the water stress of plants in the soil, which was not easy. The tensiometers von Unold found were not able to reach the required water potential without cavitating, so he decided to design a new type of tensiometer.  He says, “I showed my former boss the critical points. It must be glued perfectly, the ceramic needed defined porosity, a reliable air reference access, and water protection of the pressure transducer. I explained it with a transparent acrylic glass prototype to make it easier to understand. At a certain point, my boss said, “Okay, please stop. I don’t understand much about these things, but you can make those on your own.”

Two snorkels protecting a data logger from relative humidity

Two snorkels protected a data logger predecessor from relative humidity.

Snorkels Solve a Research Crisis

The research team used those tensiometers (along with other chemical and microbial monitoring) to investigate why trees only in the precise altitude of 800 to 1100 meters were dying. One challenge facing the team was that they didn’t have access to anything we might call a data logger today.  Von Unold says, “We did have a big process machine from Schlumberger that could record the sensors, but it wasn’t designed to be placed in alpine regions where maximum winter temperatures reached -30℃ or below. We had to figure out how to protect this extremely expensive machine, which back then cost more than my annual salary.“

Von Unold’s advisor let him use the machine, cautioning him that the humidity it was exposed to could not exceed 80%, and the temperature must not fall below 0℃.  As von Unold pondered how to do this, he had an idea. Since the forest floor often accumulated more than a meter of snow, he designed an aluminum box with two snorkels that would reach above the snow.  The snorkels were guided to a height of two meters.  Using these air vents, he sucked a small amount of cold, dry air into the box. Then, he took his mother’s hot iron, bought a terminal switch to replace the existing one (so it turned on in the range of 0-30℃), and mounted a large aluminum plate on the iron’s metal plate to better distribute the heat.

Von Unold says, “Pulling in the outside air and heating it worked well. The simple technique reduced the relative humidity and controlled the temperature inside the box. Looking back, we were fortunate there wasn’t condensing water and that we’d selected a proper fan and hot iron. We didn’t succeed entirely, as on hot summer days it was a bit moist inside the box, but luckily, the circuit boards took no damage.”

Fog in trees in a pine forest

Tree mortality factors were only found at the precise altitude where fog accumulated.

Finding Answers

Interestingly, the research team discovered there was more to the forest decline story than they thought. Fog interception in this range was extremely high, and when it condensed on the needles, the trees absorbed more than moisture.  Von Unold explains, “In those days people of the Czech Republic and former East Germany burned a lot of brown coal for heat. The high load of sulfur dioxide from the coal reduced frost resistivity and damaged the strength of the trees, producing water stress.  These combined factors were only found at the precise altitude where the fog accumulated, and the weakened trees were no match for the intense storms that are sometimes found in the Alps.”  Von Unold says once the East German countries became more industrialized, the problem resolved itself because the people stopped burning brown coal.

Share Your Hacks with Us

Do you have an instrument hack that might benefit other scientists?  Send your idea to [email protected].

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

No comments yet

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.