Skip to content

Posts tagged ‘ecosystem’

Stem Water Content Changes Our Understanding of Tree Water Use

In an update to our previous blog, “Soil Moisture Sensors in a Tree?”, we highlight two current research projects using soil moisture sensors to measure volumetric water content (VWC) in tree stems and share why this previously difficult-to-obtain measurement will change how we look at tree water usage.

stem water content

Researchers explore the feasibility of inserting capacitance soil sensors in tree stems as a real-time measurement.

Soil Moisture Sensors in Tree Stems?

In a recent research project, Ph.D. candidate Ashley Matheny of the University of Michigan used soil sensors to measure volumetric water content in the stems of two species of hardwood trees in a northern Michigan forest: mature red oak and red maple.  Though both tree types are classified as deciduous, they have different strategies for how they use water. Oak is anisohydric, meaning the species doesn’t control their stomata to reduce transpiration, even in drought conditions.  Isohydric maples are more conservative. If the soil starts to dry out, maple trees will maintain their leaf water potential by closing their stomata to conserve water.  Ashley and her research team wanted to understand the different ways these two types of trees use stem water in various soil moisture scenarios.

Historically, tree water storage has been measured using dendrometers and sap flow data, but Ashley’s team wanted to explore the feasibility of inserting a capacitance-type soil sensor in the tree stems as a real-time measurement.  They hoped for a practical way to make this measurement to provide more accurate estimations of transpiration for use in global models.  

Scientists measured volumetric water content in the stems of two species of hardwood trees in a northern Michigan forest: mature red oak and red maple.

Measurements used

Ashley and her team used meteorological, sap flux, and stem water content measurements to test the effectiveness of capacitance sensors for measuring tree water storage and water use dynamics in one red maple and one red oak tree of similar size, height, canopy position and proximity to one another (Matheny et al. 2015). They installed both long and short soil moisture probes in the top and the bottom of the maple and oak tree stems, taking continuous measurements for two months. They calibrated the sensors to the density of the maple and oak woods and then inserted the sensors into drilled pilot holes.  They also measured soil moisture and temperature for reference, eventually converting soil moisture measurements to water potential values.

Results Varied According to Species

The research team found that the VWC measurements in the stems described tree storage dynamics which correlated well with average sap flux dynamics.  They observed exactly what they assumed would be the anisohydric and isohydric characteristics in both trees.  When soil water decreased, they saw that red oak used up everything that was stored in the stem, even though there wasn’t much available soil moisture.  Whereas in maple, the water in the stem was more closely tied to the amount of soil water. After precipitation, maple trees used the water stored in their stem and replaced it with more soil water.  But, when soil moisture declined, they held onto that water and used it at a slower rate.

stem water content

Researchers want to figure out the appropriate level of detail for tree water-use strategy in a global model.

Trees use different strategies at the species level

The ability to make a stem water content measurement was important to these researchers because much of their work deals with global models representing forests in the broadest sense possible.  They want to figure out the appropriate level of detail for tree water-use strategy in a global model. Both oak and the maple are classified as broadleaf deciduous, and in a global model, they’re lumped into the same category. But this study illustrates that if you’re interested in hydrodynamics (the way that trees use water), deciduous trees use different strategies at the species level.  Thus, there is a need to treat them differently to produce accurate models.

Read the full study in Ecosphere.

Reference: Matheny, A. M., G. Bohrer, S. R. Garrity, T. H. Morin, C. J. Howard, and C. S. Vogel. 2015. Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere 6(9):165. http://dx.doi.org/10.1890/ES15-00170.1

Next week: Learn about more research being done using soil moisture sensors to measure volumetric water content in tree stems.

Get more information on applied environmental research in our

Soil Moisture Sensors: Why TDR VS. Capacitance May Be Missing the Point (Part 2)

Dr. Colin S. Campbell discusses whether TDR vs. capacitance (see part 1) is the right question, the challenges facing soil moisture sensor technology, and the correct questions to ask before investing in a sensor system.

It’s easy to overlook the obvious question: what is being measured?

What are You Trying to Measure?

When considering which soil water content sensor will work best for any application, it’s easy to overlook the obvious question: what is being measured?  Time Domain Reflectometry (TDR) vs. capacitance is the right question for a researcher who is looking at the dielectric permittivity across a wide measurement frequency spectrum (called dielectric spectroscopy). There is important information in these data, like the ability to measure bulk density along with water content and electrical conductivity. If this is the desired measurement, currently only one technology will do: TDR. The reflectance of the electrical pulse that moves down the conducting rods contains a wide range of frequencies.  When digitized, these frequencies can be separated by fast fourier transform and analyzed for additional information.

The objective for the majority of scientists, however, is to simply monitor soil water content instantaneously or over time, with good accuracy. There are more options if this is the goal, yet there are still pitfalls to consider.

capacitance

Considerable research has been devoted to determining which soil moisture sensors meet expectation.

Each Technology Has Challenges

Why would a scientist pay $100+ for a soil volumetric water content (VWC) sensor, when there are hundreds of soil moisture sensors online costing between $5 and $15? This is where knowing HOW water content is measured by a sensor is critical.

Most sensors on home and garden websites work based on electrical resistivity or conductivity. The principle is simple: more water will allow more electrons to flow. So conductivity will change with soil water content. But, while it’s possible to determine whether water content has changed with this method, absolute calibration is impossible to achieve as salts in the soil water will change as the water content changes. A careful reading of sensor specs will sometimes uncover the measurement method, but sometimes, price is the only indication.

Somewhere between dielectric spectroscopy and electrical resistance are the sensors that provide simple, accurate water content measurement. Considerable research has been devoted to determining which of these meet expectation, and the results suggest that Campbell Scientific, Delta-T, Stevens, Acclima, Sentek, and METER (formerly Decagon Devices), provide accurate sensors vetted by soil scientists. The real challenge is installing the sensors correctly and connecting them to a system that meets data-collection and analysis needs.

Installation Techniques Affect Accuracy

Studies show there is a difference between mid-priced sensor accuracy when tested in laboratory conditions. But, in the field, sensor accuracy is shown to be similar for all good quality probes, and all sensors benefit from site specific soil calibration. Why? The reason is associated with the principle upon which they function. The electromagnetic field these sensors produce falls off exponentially with distance from the sensor surface because the majority of the field is near the electrodes. So, in the lab, where test solutions form easily around sensor rods, there are differences in probe performance.  In a natural medium like soil, air gaps, rocks, and other detritus reduce the electrode-to-soil contact and tend to reduce sensor to sensor differences. Thus, picking an accurate sensor is important, but a high quality installation is even more critical.

capacitance

Improper installation is the largest barrier to accuracy.

Which Capacitance Sensor Works Best?

Sensor choice should be based on how sensors will be installed, the nature of the research site, and the intended collection method. Some researchers prefer a profile sensor, which allows instruments to be placed at multiple depths in a single hole. This may facilitate fast installation, but air gaps in the auger pilot hole can occur, especially in rocky soils. Fixing this problem requires filling the hole with a slurry, resulting in disturbed soil measurements. Still, profile sensor installation must be evaluated against the typical method of digging a pit and installing sensors into a side-wall. This method is time consuming and makes it more difficult to retrieve sensors.

New technology that allows sensor installation in the side of a 10 cm borehole may give the best of both worlds, but still requires backfill and has the challenge of probe removal at the end of the experiment.

The research site must also be a consideration. If the installation is close to main power or easily reached with batteries and solar panels, your options are open: all sensors will work. But, if the site is remote, picking a sensor and logging system with low power requirements will save time hauling in solar panels or the frustration of data loggers running out of batteries.

capacitance

Often times it comes down to convenience.

Data Loggers Can Be a Limitation

Many manufacturers design data loggers that only connect to the sensors they make. This can cause problems if the logging system doesn’t meet site needs. All manufacturers mentioned above have sensors that will connect to general data loggers such as Campbell Scientific’s CR series. It often comes down to convenience: the types of sensor needed to monitor a site, the resources needed to collect and analyze the data, and site maintenance. Cost is an issue too, as sensors range from $100 to more than $3000.

Successfully Measure Water Content

The challenge of setting up and monitoring soil water content is not trivial, with many choices and little explanation of how each type of sensor will affect the final results. There are a wealth of papers that review the critical performance aspects of all the sensors discussed, and we encourage you to read them. But, if soil water content is the goal, using one of the sensors from the manufacturers named above, a careful installation, and a soil-specific calibration, will ensure a successful, accurate water content measurement.

For an in-depth comparison of TDR versus capacitance technology, read: Dielectric Probes Vs. Time Domain Reflectometers

For an understanding of how capacitance sensors compare to other major contemporary sensor technologies, watch our Soil Moisture 201 webinar.

Where Will the Next Generation of Scientists Come From?

The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international science and education program that provides students and the public worldwide with the opportunity to participate in data collection and the scientific process.

GLOBE

GLOBE has a huge impact in schools around the world.

Its mission is to promote the teaching and learning of science, enhance community environmental literacy and stewardship, and provide research quality environmental observations.  The GLOBE program works closely with agencies such as NASA to do projects like validation of SMAP data and the Urban Heat Island/Surface Temperature Student Research Campaign.  The figure below shows the impact GLOBE is having in schools worldwide.

Dixon Butler, former GLOBE Chief Scientist, is excited about the recent African project GLOBE is now participating in called the TAHMO project.  He says, “Right now, in Kenya and Nigeria, GLOBE schools are putting in over 100 new  mini-weather stations to collect weather data, and all that usable data will flow into the GLOBE database.”

GLOBE

Participating in real science at a young age gets youth more ready to be logical, reasoning adults.

Why Use Kids to Collect Data?

Dixon says kids do a pretty good job taking research quality environmental measurements.  Working with agencies like NASA gets them excited about science, and participating in real science at a young age gets them more ready to be logical, reasoning adults.  He explains, “The 21st century requires a scientifically literate citizenry equipped to make well-reasoned choices about the complex and rapidly changing world. The path to acquiring this type of literacy goes beyond memorizing scientific facts and conducting previously documented laboratory experiments to acquiring scientific habits of mind through doing hands-on, observational science.”

Dixon says when GLOBE started, the plan was to have the kids measure temperature.  But one science teacher, Barry Rock, who had third grade students using Landsat images to do ozone damage observations, called the White House and said, “Kids can do a lot more than measure temperature.” He gave a presentation at the White House where he showed a video of two third grade girls looking at Landsat imagery. They were discussing their tree data, and at one point, one said to the other, ‘That’s in the visible. Let’s look at it in the false color infrared.’  At that point, Barry became the first chief scientist of GLOBE, and he helped set up the science and the protocols that got the program started.

GLOBE

GLOBE uses online and in-person training and protocols to be sure the students’ data is research quality.

Can GLOBE Data be Used by Scientists?

GLOBE uses online and in-person training and protocols to be sure the students’ data is research quality.  Dixon explains, “There was a concern that these data be credible, so the idea was to create an intellectual chain of custody where scientists would write the protocols in partnership with an educator so they would be written in an educationally appropriate way.  Then the teachers would be trained on those protocols. The whole purpose is to be sure scientists have confidence that the data being collected by GLOBE is useable in research.”

Today GLOBE puts out a Teacher’s’ Guide and the protocols have increased from 17 to 56.  The soil area went from just a temperature and moisture measurement to a full characterization.  Dixon says, “We’ve been trying to improve it ever since, and I think we’re getting pretty good at it.”  

GLOBE

GLOBE students were the only ones going around looking up at the sky doing visual categorization of clouds and counting contrails. It was just no longer being done, except by these students.

What About the Skeptics?

If you ask Dixon how he deals with skeptics of the data collected by the kids, he says, “I tell them to take a scientific approach.  Check out the data, and see if they’re good.  One year, a GLOBE investigator found a systematic error In U-tube maximum/minimum thermometers mounted vertically, which had been in use for over a century, that no one else found. The GLOBE data were good enough to look at and find the problem.  There are things the data are good for and things they’re not good for. Initially, we wanted these data to be used by scientists in the literature, and there have been close to a dozen papers, but I would argue that GLOBE hasn’t yet gotten to the critical mass of data that would make that easier.”

GLOBE did have enough cloud data, however, to be used in an important analysis of geostationary cloud data where the scientist compared GLOBE student data with satellite data Dixon adds, “GLOBE students were the only ones going around looking up at the sky doing visual categorization of clouds and counting contrails. It was just no longer being done, except by GlOBE students. Now GLOBE has developed the GLOBE Observer app that let’s everyone take and report cloud observations.”

GLOBE

Young minds need to experience the scientific approach of developing hypotheses, taking careful, reproducible measurements, and reasoning with data.

What’s the Future of GLOBE?

Dixon says GLOBE’s goal is to raise the next generation of intelligent constituents in the body politic. He says, “I thought about this a lot when I worked for the US Congress.  In addition to working with GLOBE, I now have a non-profit grant-making organization called YLACES with the objective of helping kids to learn science by doing science.  Young minds need to experience the scientific approach of developing hypotheses, taking careful, reproducible measurements, and reasoning with data. Inquiries should begin early and grow in quality and sophistication as learners progress in literacy, numeracy, and understanding scientific concepts. In addition to fostering critical thinking skills, active engagement in scientific research at an early age also builds skills in mathematics and communications. These kids will grow up knowing how to think scientifically. They’ll ask better questions, and they’ll be harder to fool.   I think that’s what the world needs, and I see the environment and science as the easiest path to get there.”

Learn more about GLOBE and its database here and about YLACES at www.ylaces.org.

Get more information on applied environmental research in our

Best Research Instrument Hacks

We wanted to highlight innovative ways people have modified their instrumentation to fit their research needs.  Here, Georg von Unold, founder and president of UMS (now METER) illustrates ingenuity in a story that inspired the invention of the first UMS tensiometer and what could be one of the greatest scientific instrument hacks of all time.

Instrument hacks

The Bavarian Alps

An Early Penchant for Ingenuity

In 1986, graduating German students were required to join the military or perform civil service.  Von Unold chose to do a civil service project investigating tree mortality in the alpine region of the Bavarian Mountains.  He explains, “We were trying to understand pine tree water stress in a forest decline study related to storms in certain altitudes where trees were inexplicably falling over. The hypothesis was that changing precipitation patterns had induced water stress.”  

To investigate the problem, von Unold’s research team needed to find tensiometers that could measure the water stress of plants in the soil, which was not easy. The tensiometers von Unold found were not able to reach the required water potential without cavitating, so he decided to design a new type of tensiometer.  He says, “I showed my former boss the critical points. It must be glued perfectly, the ceramic needed defined porosity, a reliable air reference access, and water protection of the pressure transducer. I explained it with a transparent acrylic glass prototype to make it easier to understand. At a certain point my boss said, “Okay, please stop. I don’t understand much about these things, but you can make those on your own.”

Instrument hacks

Two snorkels protected a data logger predecessor from relative humidity.

Snorkels Solve a Research Crisis

The research team used those tensiometers (along with other chemical and microbial monitoring) to investigate why trees only in the precise altitude of 800 to 1100 meters were dying. One challenge facing the team was that they didn’t have access to anything we might call a data logger today.  Von Unold says, “We did have a big process machine from Schlumberger that could record the sensors, but it wasn’t designed to be placed in alpine regions where maximum winter temperatures reached -30℃ or below. We had to figure out how to protect this extremely expensive machine, which back then cost more than my annual salary.“

Von Unold’s advisor let him use the machine, cautioning him that the humidity it was exposed to could not exceed 80%, and the temperature must not fall below 0℃.  As von Unold pondered how to do this, he had an idea. Since the forest floor often accumulated more than a meter of snow, he designed an aluminum box with two snorkels that would reach above the snow.  The snorkels were guided to a height of two meters.  Using these air vents, he sucked a small amount of cold, dry air into the box. Then, he took his mother’s hot iron, bought a terminal switch to replace the existing one (so it turned on in the range of 0-30℃), and mounted a large aluminum plate on the iron’s metal plate to better distribute the heat.

Von Unold says, “Pulling in the outside air and heating it worked well. The simple technique reduced the relative humidity and controlled the temperature inside the box. Looking back, we were fortunate there wasn’t condensing water and that we’d selected a proper fan and hot iron. We didn’t succeed entirely, as on hot summer days it was a bit moist inside the box, but luckily, the circuit boards took no damage.”

Instrument hacks

Tree mortality factors were only found at the precise altitude where fog accumulated.

Finding Answers

Interestingly, the research team discovered there was more to the forest decline story than they thought. Fog interception in this range was extremely high, and when it condensed on the needles, the trees absorbed more than moisture.  Von Unold explains, “In those days people of the Czech Republic and former East Germany burned a lot of brown coal for heat. The high load of sulphur dioxide from the coal reduced frost resistivity and damaged the strength of the trees, producing water stress.  These combined factors were only found at the precise altitude where the fog accumulated, and the weakened trees were no match for the intense storms that are sometimes found in the Alps.”  Von Unold says once the East German countries became more industrialized, the problem resolved itself because the people stopped burning brown coal.

Share Your Hacks with Us

Do you have an instrument hack that might benefit other scientists?  Send your idea to kcampbell@metergroup.com.

How to Get More From Your NDVI Sensor (Part 3)

In the conclusion of our three-part series on improving NDVI sensor data (see part 2), we discuss how to correct for limitations which occur in high leaf area index (LAI) conditions.

NDVI Sensor

Where there’s a large amount of vegetation, NDVI tends to saturate.

NDVI Limitations – High LAI

NDVI is useful in the midrange of LAI’s as long as you don’t have strong soil effects, but as you approach an LAI above 4, you lose sensitivity. In figure 6, loss of sensitivity is primarily due to a saturation in the red band. Measurements were taken in a wheat canopy and a maize canopy. The near infrared reflectance is sensitive across the entire spectrum of the wheat and maize canopies, but the red saturates relatively quickly. Where the red starts to saturate is where the NDVI starts to saturate.

NDVI Sensor

Figure 6: Gitelson (2004) J. Plant Phys

Note: NDVI saturates at high LAI’s, however, if your purpose is to get at the fractional interception of light, NDVI tends not to have the saturation issue. In Figure 7, Fpar or the fractional interception of light of photosynthetically radiation is nearly complete far before NDVI saturates. This is because canopies are efficient at intercepting light, and once we get to an LAI of about 4, most of the light has been intercepted or absorbed by the canopy.  Thus, incremental increases in LAI don’t significantly affect the FPar variable.

NDVI Sensor

Figure 7: Fractional interception of light is near complete at an LAI around 4. (Gamon et al. (1995) Eco. Apps)

Solution 3- WDRVI

One solution for the NDVI saturation issue is called the Wide Dynamic Range Vegetation Index (WDRVI). It’s formulation is similar to NDVI, except for a weighting coefficient that can be used to reduce the disparity between the contribution of the near infrared and red reflectance.  

NDVI Sensor

In the WDRVI, a is multiplied by the near infrared reflectance to reduce its value and bring it closer to the red reflectance value. In doing so, it balances out the red and the near infrared contribution to the vegetation index.

NDVI Sensor

Figure 8: (Gitelson (2004) J. Plant Phys)

a can range anywhere from 0 to 1. Figure 8 shows that as we use a smaller value of a, we get an increasing linear response of the wide dynamic vegetation index to LAI.

The only drawback of the WDRVI is that the selection of a is subjective. It’s something that you experiment on your own until you find a value for a that is optimal for your solution.  People tend to err on the side of a very low value simply because they’ll get closer and closer to a linear response to LAI as a decreases.

Solution 4 – Enhanced Vegetation Index

The enhanced vegetation index (EVI) was designed to enhance sensitivity in high biomass ecosystems, but it also attempts to reduce atmospheric influences.  This was a vegetation index created for the purposes of a satellite based platform. There’s a lot of atmosphere to look through from a satellite to the ground, and sometimes the aerosols in the atmosphere affect the reflectances in the red and the near infrared regions causing spurious observations.  The EVI also tries to reduce sensitivity of the index to soil. Thus the EVI is a kind of solution to both extremes.

NDVI Sensor

In the EVI equation, the two major inputs are near infrared and red reflectances.  C1 , C2, and L are all parameters that can be estimated, but the blue band is something that has to be measured. Most NDVI sensors are two band sensors, so you don’t have that information in the blue.  Plus, with satellites, the blue band is relatively noisy and doesn’t always have the best quality data, thus EVI has limited value.

Solution 6: EVI2 (Enhanced Vegetation Index 2)

Those problems led a scientist named Jiang to come up with a solution.  Jiang observed quite a bit of autocorrelation between the red band and the blue band, so he decided to try and formulate EVI without the blue band in what he called the EVI2 (Enhanced Vegetation Index 2).  if you’re interested in the mathematics, we encourage you to go read his paper, but here we give you the equation in case you’re interested in using it.

NDVI Sensor

Figure 9

When Jiang calculated his EVI2 and compared it to the traditional EVI (Figure 9), it was nearly a one to one relationship. For all intents and purposes EVI2 was equivalent to EVI.  Since this avoids blue band, it offers some exciting possibilities as it reduces to just using the two inputs of NIR and red bands to calculate NDVI.

NDVI Sensor Summary

NDVI measurements have considerable value, and though there are extremes where NDVI performs poorly, even in these cases there are several solutions.  These solutions all use the near infrared and the red bands, so you can take an NDVI sensor, obtain the raw values of NIR and red reflectances and reformulate them in one of these indices (there are several other indices available that we haven’t covered). So if you’re in a system with extremely high or low LAI, try to determine how near infrared and red bands can be used in some type of vegetation index to allow you to research your specific application.

Get more information on applied environmental research in our

Get More From Your NDVI Sensor (Part 2)

Last week we discussed Normalized Difference Vegetation Index (NDVI) sampling across a range of scales both in space and in time, from satellites sampling the entire earth’s surface to handheld small sensors that measure individual plants or even leaves (see part 1).  This week, learn about NDVI applications, limitations, and how to correct for those limitations.

NDVI Sensor

Limitations of the Normalized Difference Vegetation Index tend to occur at the extremes of the spectrum.

NDVI Sensor

NDVI Applications

People use NDVI to infer things like leaf area index (LAI) or fractional light interception (FPAR) of a canopy.  Some scientists also associate NDVI with biomass or yield of a crop. People also use NDVI to get a sense of phenology (general temporal patterns of greenness), as well as where vegetation occurs or how much vegetation is in a particular location.

In Figure 4, you can see how the reflectance spectrum at a given canopy LAI changes with leaf area index, decreasing in the visible range while increasing in the near infrared.

NDVI Sensor

Figure 4

At very low LAI’s, the reflectance spectrum is relatively undifferentiated between red and NIR (black line), but when LAI is high, there’s a strong absorption of red light by chlorophyll with a strong reflectance in the NIR. If fact, as LAI increases, there’s an ever-increasing reflectance in the near infrared around 800 nm.

NDVI Limitations

Limitations of the Normalized Difference Vegetation Index tend to occur at the extremes of the spectrum. Any time there’s very low vegetation cover (majority of the scene is soil), NDVI will be sensitive to that soil. This can confound measurements.  On the other extreme, where there’s a large amount of vegetation, NDVI tends to saturate. Notice the negligible difference between spectra at an leaf area index (LAI) of 3 (purple) versus 6 (green). Indeed, in a tropical forest, NDVI will not be sensitive to small changes in the LAI because LAI is already very high.  However, several solutions exist.

Solution 1-Soil Adjusted Vegetation Index

Figure 5 shows the results of a study taking spectral measurements of different vegetation indices across a transect of bare soil.  Moving from dry clay loam to wet clay loam, we see a very strong response of NDVI due to the wetness of the soil; undesirable if we’re measuring vegetation.  We’re not interested in an index that’s sensitive to changes in soil or soil moisture. However, there are a few other indices plotted in figure 5 with much lower sensitivities to variations in the soil across the transect.

NDVI Sensor

Figure 5: Qi et al. (1994) Rem. Sens. Env.

The first one of those indices is the Soil Adjusted Vegetation Index (SAVI). The equation for SAVI is similar to NDVI. It incorporates the same two bands as the NDVI–the near infrared and the red.

NDVI Senso

Soil Adjusted Vegetation Index (Huete (1988) Rem. Sens. Env.)

The only thing that’s different, is the L parameter.  L is a soil adjustment factor with values that range anywhere from 0 to 1.  When vegetation cover is 100%, L is 0 because there’s no need for a soil background adjustment. However, when vegetation cover is very low, that L parameter will approach one. Because it is difficult to measure exactly how much vegetation cover you have without using NDVI, we can modify the NDVI so it’s not sensitive to soil by guessing beforehand what L should be. It’s common practice to set L to an intermediate value of 0.5.   You can see in Figure 5 the Soil Adjusted Vegetation Index or SAVI has a much lower sensitivity to the soil background.

Solution 2- Modified SAVI

The next vegetation index is the modified SAVI (MSAVI). The SAVI equation contains an L parameter that we have to estimate–not an accurate way of handling things.  So a scientist named Key developed a universal optimum for L. We won’t get into the math, but he was able to simplify the SAVI equation to where there’s no longer a need for the L parameter, and the only inputs required are the reflectances in the near infrared and the red.  

NDVI Sensor

Modified SAVI (Qi et al. (1994) Rem. Sens. Env.)

This was a pretty significant advance as it circumvented the need to estimate or independently measure L. When Key compared SAVI to MSAVI, there was virtually no difference between the two indices in terms of their sensitivity to the amount of vegetation and their response to the soil background.

NDVI Sensor

MSAVI compares well with SAVI in terms of dynamic range and noise level (Qi et al. (1994) Rem. Sens. Env.)

Next week:  Learn about solutions for high LAI.

Get more information on applied environmental research in our

Piñon Pine: Studying the Effects of Climate Change on Drought Tolerance

In the name of science, Henry Adams has killed a lot of trees. Adams, a PhD student at the University of Arizona, is studying the effect of climate change and drought on Piñon Pines. The Piñon Pine, a conifer with an extensive root system, grows at high elevations in the Southwest. Its root system makes the Piñon Pine remarkably drought tolerant, but in 2002- 03, an extended drought in combination with a bark beetle outbreak killed 12,000 hectares of the trees. It was a 100 year drought, the driest period on record, and interestingly it coincided with temperatures 2 to 3˚C above recorded averages.

Piñon Pine

Biosphere 2. Image: wickipedia.org.

Research in Biosphere 2

Adams and his advisors wondered if increasing temperatures due to climate change might exacerbate the effects of drought and accelerate tree die-off. The University of Arizona has an unusual opportunity to test drought conditions and temperature change in its Biosphere 2 lab. Biosphere 2, a unique 3-acre enclosed “living laboratory” in the high Arizona desert, once hosted 8 people for two years of self-contained survival living. Now it hosts research projects, and Adams was able to use space inside to induce drought in two separate treatments of transplanted Piñon pines, one at ambient temperatures and one at temperatures 4˚C above ambient.

Sobering Outlook for the Piñon Pine

“Obviously, the warmer trees should die first,” says Adams. “But we want to test whether temperature change, independent of other factors, accelerates mortality.” If that acceleration in fact occurs, a shorter drought, the kind the Piñon Pine has historically been able to wait out, might cause a significant die-off.

Piñon Pine

Piñon Pine. Image: Naturesongs.com

Measuring Drought Response

Naturally, Adams and his colleagues did more than just watch how fast trees would die without water. They also studied the trees physiological response to drought, measuring gas exchange, water potential, and stomatal conductance. To measure stomatal conductance, they used a leaf porometer, making almost 9,000 separate measurements in sessions that lasted from sunup to sundown on one very long day once each week.

Stomatal Conductance in Conifers

There isn’t much guidance in the porometer manual for people who want to use it on conifers, so Adams “played around with it a little bit” on non-drought stressed trees before he started his study. He found that the best way to get good readings was to cover the aperture with a single layer of needles. “Needles are this three-dimensional thing,” he explains. “They have stomata on several sides, depending on the species. If you imagine that the fingers on your hand are needles sticking up from a branch, we just took those and pushed them together to make sure that there was just a one needle thick covering over the aperture. If you spread your fingers, that’s what it would be like if you didn’t totally cover the aperture-then you underestimate the conductance. We also found that if we stuck several layers in there, we could drive the conductance number up.

Next week: Find out how the researchers made comparisons at leaf level, transplanted the trees, and future implications for the Piñon Pine.

Get more information on applied environmental research in our

German Researchers Directly Measure Climate Change Effects Using Lysimeter Network (part 2)

In Germany, scientists are measuring the effects of tomorrow’s climate change with a vast network of 144 large lysimeters (see part 1).  This week, read about the intense precision required to move the soil-filled lysimeters, how problems are prevented, and how the data is used by scientists worldwide.

climate change

Moving the lysimeters

Moving the Lysimeters is not Easy

As noted previously, one TERENO lysimeter weighs between 2.5 and 3.5 tons depending on the soil and the water saturation, so the problem of  transporting it without compacting the soil or causing cracks in the soil column caused Georg many sleepless nights.   He explains, “We found a truck with an air venting system, which could prevent vibrations in a wide range. We made a wooden support structure, bought 100 car springs, and loaded the lysimeter on this frame.  After some careful preparation and design adjustments, I told the truck driver, ‘take care, I’m recording the entire drive with my acceleration sensor and data logger so I can see if you are driving faster than I allow.”  Each lysimeter soil surface level was marked to check if the lysimeter was rendered useless due to transport, and the truck was not allowed to go over a railway or a bump in the road faster than 2 km per hour to avoid the consequences of compaction and cracking.

climate change

Tensiometers and soil moisture sensors monitor the hydraulic conditions inside the lysimeters.

Preventing Problems

Understanding the water potential inside the intact lysimeter core is not trivial. Georg and his team use maintenance-free tensiometers, which overcome the typical problem of cavitation in dry conditions as they don’t need to be refilled. Still, this parameter is so critical they installed 3 of them and took the median, which can be weighed in case one of the sensors is not working. Georg says, “There is a robust algorithm behind measuring the true field situation with tensiometers.”

What Happens With the Data?

Georg hopes that many researchers will take advantage of the TERENO lysimeter network data (about 4,000 parameters stored near-continuously on a web server). He says, “Researchers have free access to the data and can publish it. It’s wonderful because it’s not only the biggest project of its kind, each site is well-maintained, and all measurements are made with the same equipment, so you can compare all the data.”  (Contact Dr. Thomas Puetz for access). Right now, over 400 researchers are working with those data, which has been used in over 200 papers.

climate change

Lysimeter plant with CO2 fumigation facility in Austria.

What’s the Future?

Georg thinks 40,000 data points arriving every minute will give scientists plenty of information to work on for years to come. Each year, more TERENO standard lysimeters are installed to enlarge the database. The ones in TERENO have a 1 m2 surface area, which is fine for smaller plants like wheat or grass, but is not a good dimension for big plants like trees and shrubs. Georg points out that you have to take into account effort versus good data. Larger lysimeters present exponentially larger challenges. He admits that, “With the TERENO project, they had to make a compromise. All the lysimeters are cut at a depth of 1.5 m. If there is a mistake, it is the same with all the lysimeters, so we can compare on climate change effects.”  He adds, “After six years, we now have a standard TERENO lysimeter design installed over 200 times around the world, where data can be compared through a database, enhancing our understanding of water in an era of climate change.”

Get more information on applied environmental research in our

Read about 12 large Ecotron weighing lysimeters measuring climate change at the University of Hasselt.

German Researchers Directly Measure Climate Change Effects Using TERENO Lysimeters

In Germany, scientists are measuring the effects of tomorrow’s climate change with a vast network of 144 large lysimeters.

lysimeters

The goal of these lysimeters is to measure energy balance, water flux and nutrition transport, emission of greenhouse gases, biodiversity, and solute leaching into the groundwater.

In 2008, the Karlsruhe Institute of Technology began to develop a climate feedback monitoring strategy at the Ammer catchment in Southern Bavaria. In 2009, the Research Centre Juelich Institute of Agrosphere, in partnership with the Helmholtz-Network TERENO (Terrestrial Environmental Observatories) began conducting experiments in an expanded approach.  

Throughout Germany, they set up a network of 144 large lysimeters with soil columns from various climatic conditions at sites where climate change may have the largest impact.  In order to directly observe the effects of simulated climate change, soil columns were taken from higher altitudes with lower temperatures to sites at a lower altitude with higher temperatures and vice versa. Extreme events such as heavy rain or intense drought were also experimentally simulated.

lysimeters

Lysimeter locations in Germany

Georg von Unold, whose company (formerly UMS, now METER) built and installed the lysimeters comments on why the project is so important. “From a scientific perspective, we accept changes for whatever reason they may happen, but it is our responsibility to carefully monitor and predict how these changes cause floods, droughts, and disease. We need to be prepared to react if and before they affect us.”

How Big Are the Lysimeters?

Georg says that each lysimeter holds approximately 3,000 kilograms of soil and has to be moved under compaction control with specialized truck techniques.  He adds,The goal of these lysimeters is to measure energy balance, water flux and nutrition transport, emission of greenhouse gases, biodiversity, and solute leaching into the groundwater. Researchers measure the conditions of water balance in the natural soil surrounding the lysimeters, and then apply those same conditions inside the lysimeters with suction ceramic cups that lay across the bottom of the lysimeter.  These cups both inject and take out water to mimic natural or artificial conditions.”

lysimeters

Researchers use water content sensors and tensiometers to monitor hydraulic conditions inside the lysimeters.

Researchers monitor the new climate situation with microenvironment monitors and count the various grass species to see which types become dominant and which might disappear. They use water content sensors and tensiometers to monitor hydraulic conditions inside the lysimeters. The systems also use a newly-designed system to inject CO2 into the atmosphere around the plants and soil to study increased carbon effects.  Georg says, “We developed, in cooperation with the HBLFA Raumberg Gumpenstein, a new, fast-responding CO2 enrichment system to study CO2 from plants and soil respiration. We analyze gases like CO2, oxygen, and methane. The chambers are rotated from one lysimeter to another, working 24 hours, 7 days a week.  Each lysimeter is exposed only for a few minutes so as not to change the natural environment.”

Next week:  Read about the intense precision required to move the soil-filled lysimeters, how problems are prevented, and how the data is used by scientists worldwide.

Get more information on applied environmental research in our

Top Five Blog Posts in 2016

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2016.

Lysimeters Determine if Human Waste Composting can be More Efficient

Top five blog posts Environmental biophysics

In Haiti, untreated human waste contaminating urban areas and water sources has led to widespread waterborne illness.  Sustainable Organic Integrated Livelihoods (SOIL) has been working to turn human waste into a resource for nutrient management by turning solid waste into compost.  Read more

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Top five blog posts Environmental biophysics

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity  from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more.

How Many Soil Moisture Sensors Do You Need?

Top five blog posts Environmental biophysics

“How many soil moisture sensors do I need?” is a question that we get from time to time. Fortunately, this is a topic that has received substantial attention by the research community over the past several years. So, we decided to consult the recent literature for insights. Here is what we learned.

Data loggers: To Bury, or Not To Bury

Top five blog posts Environmental biophysics

Globally, the number one reason for data loggers to fail is flooding. Yet, scientists continue to try to find ways to bury their data loggers to avoid constantly removing them for cultivation, spraying, and harvest.  Chris Chambers, head of Sales and Support at Decagon Devices always advises against it. Read more

Founders of Environmental Biophysics:  Champ Tanner

Top five blog posts Environmental biophysics

Image: http://soils.wisc.edu/people/history/champ-tanner/

We interviewed Gaylon Campbell, Ph.D. about his association with one of the founders of environmental biophysics, Champ Tanner.  Read more

And our three most popular blogs of all time:

Do the Standards for Field Capacity and Permanent Wilting Point Need to Be Reexamined?

Top five blog posts Environmental biophysics

We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point.  Read more

Environmental Biophysics Lectures

Top five blog posts Environmental biophysics

During a recent semester at Washington State University a film crew recorded all of the lectures given in the Environmental Biophysics course. The videos from each Environmental Biophysics lecture are posted here for your viewing and educational pleasure.  Read more

Soil Moisture Sensors In a Tree?

Top five blog posts Environmental biophysics

Soil moisture sensors belong in the soil. Unless, of course you are feeling creative, curious, or bored. Then maybe the crazy idea strikes you that if soil moisture sensors measure water content in the soil, why couldn’t they be used to measure water content in a tree?  Read more

Get more information on applied environmental research in our

%d bloggers like this: