Skip to content

Posts tagged ‘weather monitoring’

Why mesonets make weather prediction more accurate

The staggering cost of Montana’s “flash drought”

Some people figured it was climate change. One statistician said it was a part of a cyclical trend for poor crop years. Whatever the cause, the 2017 flash drought that parched the entire state of Montana and most of South Dakota, severely impacted the profitability of ranchers and farmers. In western Montana, fires burned some of the largest acreages in recent history. It resulted in one of the biggest wildfire incident reports (over one-million acres) and caused virtually 100% crop loss in northeastern Montana. The U.S. Dept. of Agriculture estimated the crop loss to be in the hundreds of millions of dollars, and one question was on everybody’s mind—why did no one see it coming?

Figure 1. Montana drought conditions August 2017 (Source: Montana State Library website: https://mslservices.mt.gov/Geographic_Information/Maps/drought/)

Getting the right weather data

The 2017 Montana Dept. of Natural Resources and Conservation spring drought report indicated plenty of water: “By the end of the month, almost all drought concern was removed from the state, with the exception of Wibaux and Fallon Counties….As of May 9, 2017, Montana was 98.45% drought free.” But in late May, an abrupt shift in weather conditions led to one of the hottest, driest summers on record.

The problem, says Kevin Hyde, Montana State Mesonet Coordinator, lies not only in the need for more weather data but in obtaining the right kind of data. He says, “One of the reasons drought was missed was because we’re still thinking you measure drought by snowpack and how much water is in the river, which is really great if you’ve got water rights. But we’ve got a lot of dryland out there.”

In addition to weather monitoring, Hyde is a big proponent of adding soil moisture and NDVI measurements to each of the Montana Mesonet stations he oversees. He says, “The conventional weather station only measures atmospheric conditions. But ultimately, to make any decisions, we’ve got to know not just how much water comes into the system, but how much goes into the soil. And even that’s not enough…because what we really need to know is how the water situation is going to affect plants.”

Hyde says more data are needed to warn growers and ranchers about upcoming weather risks. He points to the fact that increasing evapotranspiration got missed leading up to the summer of 2017. “We realized that if we were looking carefully at reference ET, we might have seen it about a month earlier. What would people have done? They would have changed their calf purchases. They would have figured out what kind of forage they needed to buy. These are the types of decisions people can make if they know the information sooner.”

Was the drought over? Soil moisture illuminates the bigger picture

Heavy rains came mid-September of 2017, which led some people to believe the drought was over. However, changes in soil moisture told a different story. Very little of the rain made it into the soil. “At the Havre, MT station you can see we had some heavy precipitation events. Then we had early October snows. So people expected good soil water recharge. But at the end of the day, we didn’t get it. On Sept.15th, soil moisture sensors showed a big soil moisture response at the surface but only a marginal response at 8 inches.” The melt of early October snows onto the soil, still damp from the September rain, drained to 20 inches or more. But as the snowmelt dissipated, there was minimal net gain going into the winter.

Figure 2. Soil moisture traces at the Havre, MT weather station

Predictive models need more coverage to be effective

Typically in the U.S., the National Weather Service (a division of NOAA) puts out a network of weather monitoring stations spaced out across the country, and that data gets fed into forward-looking models that help predict the weather. Dr. Doug Cobos, research scientist at METER says, “What people are finding out is that putting in a sparse network of very expensive systems has done really well. It’s been a good thing. But the spatial gaps in those networks are a problem, especially for agriculture producers and ranchers. They need to know what’s happening where they are.”

Hyde agrees, adding that we need better predictive tools that help growers and ranchers make practical decisions based on data rather than guessing. “January 1st is when the decision has to be made—do I buy cows? Do I sell cows? Do I need more pasture? But many predictions start on April 1st. As one rancher puts it, ‘We don’t bother with Las Vegas. We sit around the dining room table at the beginning of the year and put a million dollars on one shot.’”

Mesonets improve spatial distribution

Mesonets present a practical solution for the need to fill in data gaps between large, complex weather stations. The Montana Mesonet currently has 57 stations interspersed throughout the state, and through partnerships with both the public and private sector, they’re adding more stations every year.

Figure 3. Map of MT Mesonet weather stations (source: http://climate.umt.edu/mesonet/)

At each location, the Montana Mesonet team installs METER all-in-one weather stations, soil moisture sensors, NDVI sensors and data loggers that integrate with ZENTRA Cloud: an easy-to-use web software that seamlessly integrates into third-party applications through an API. He says the system enables better spatial distribution and reliability. “When we were deciding on equipment we asked ourselves: What kind of technology should we use? It had to provide high data integrity. It had to be easy to deploy and maintain. And it had to be cost effective. There’s not a lot of people in that sector. METER systems are low profile, they’re affordable, and the reliability is there. I look at some other mesonets, and they cannot afford to build out further because they are relying on large, complex, expensive systems. That’s where the METER system comes into play.”

Figure 4. Montana Mesonet station setup (Photo credit: Kevin Hyde)

Betting on the future

The Mesonet team and its partners are excited to see how their data will mesh with the available predictive tools to be the most useful and practical for growers and ranchers throughout the state, and they realize that there is still much work to do. “It’s not enough just to get the instrumentation out there. The overall crux is: how do we build the information network, and how do we build a relationship with the producers so that we can have an iterative and interactive conversation?” says Hyde. “We know there needs to be an education in how to use and interpret the data. For example: what is NDVI, and what can we learn from it? A lot of what we need to do is translate science into practical terms.” But he adds that it doesn’t need to be perfect. “What the farmers have said to us is, ‘We don’t need exact numbers. We’re gamblers. Give us probability. Teach us what it means, and we’ll make the decision.’”

Find more information on the Montana Mesonet here.

See performance data for the ATMOS 41 weather station.

Where Will the Next Generation of Scientists Come From?

The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international science and education program that provides students and the public worldwide with the opportunity to participate in data collection and the scientific process.

GLOBE

GLOBE has a huge impact in schools around the world.

Its mission is to promote the teaching and learning of science, enhance community environmental literacy and stewardship, and provide research quality environmental observations.  The GLOBE program works closely with agencies such as NASA to do projects like validation of SMAP data and the Urban Heat Island/Surface Temperature Student Research Campaign.  The figure below shows the impact GLOBE is having in schools worldwide.

Dixon Butler, former GLOBE Chief Scientist, is excited about the recent African project GLOBE is now participating in called the TAHMO project.  He says, “Right now, in Kenya and Nigeria, GLOBE schools are putting in over 100 new  mini-weather stations to collect weather data, and all that usable data will flow into the GLOBE database.”

GLOBE

Participating in real science at a young age gets youth more ready to be logical, reasoning adults.

Why Use Kids to Collect Data?

Dixon says kids do a pretty good job taking research quality environmental measurements.  Working with agencies like NASA gets them excited about science, and participating in real science at a young age gets them more ready to be logical, reasoning adults.  He explains, “The 21st century requires a scientifically literate citizenry equipped to make well-reasoned choices about the complex and rapidly changing world. The path to acquiring this type of literacy goes beyond memorizing scientific facts and conducting previously documented laboratory experiments to acquiring scientific habits of mind through doing hands-on, observational science.”

Dixon says when GLOBE started, the plan was to have the kids measure temperature.  But one science teacher, Barry Rock, who had third-grade students using Landsat images to do ozone damage observations, called the White House and said, “Kids can do a lot more than measure temperature.” He gave a presentation at the White House where he showed a video of two third grade girls looking at Landsat imagery. They were discussing their tree data, and at one point, one said to the other, ‘That’s in the visible. Let’s look at it in the false color infrared.’  At that point, Barry became the first chief scientist of GLOBE, and he helped set up the science and the protocols that got the program started.

GLOBE

GLOBE uses online and in-person training and protocols to be sure the students’ data is research quality.

Can GLOBE Data be Used by Scientists?

GLOBE uses online and in-person training and protocols to be sure the students’ data is research quality.  Dixon explains, “There was a concern that these data be credible, so the idea was to create an intellectual chain of custody where scientists would write the protocols in partnership with an educator so they would be written in an educationally appropriate way.  Then the teachers would be trained on those protocols. The whole purpose is to be sure scientists have confidence that the data being collected by GLOBE is usable in research.”

Today GLOBE puts out a Teacher’s’ Guide and the protocols have increased from 17 to 56.  The soil area went from just a temperature and moisture measurement to a full characterization.  Dixon says, “We’ve been trying to improve it ever since, and I think we’re getting pretty good at it.”  

GLOBE

GLOBE students were the only ones going around looking up at the sky doing visual categorization of clouds and counting contrails. It was just no longer being done, except by these students.

What About the Skeptics?

If you ask Dixon how he deals with skeptics of the data collected by the kids, he says, “I tell them to take a scientific approach.  Check out the data, and see if they’re good.  One year, a GLOBE investigator found a systematic error In U-tube maximum/minimum thermometers mounted vertically, which had been in use for over a century, that no one else found. The GLOBE data were good enough to look at and find the problem.  There are things the data are good for and things they’re not good for. Initially, we wanted these data to be used by scientists in the literature, and there have been close to a dozen papers, but I would argue that GLOBE hasn’t yet gotten to the critical mass of data that would make that easier.”

GLOBE did have enough cloud data, however, to be used in an important analysis of geostationary cloud data where the scientist compared GLOBE student data with satellite data Dixon adds, “GLOBE students were the only ones going around looking up at the sky doing visual categorization of clouds and counting contrails. It was just no longer being done, except by GlOBE students. Now GLOBE has developed the GLOBE Observer app that lets everyone take and report cloud observations.”

GLOBE

Young minds need to experience the scientific approach of developing hypotheses, taking careful, reproducible measurements, and reasoning with data.

What’s the Future of GLOBE?

Dixon says GLOBE’s goal is to raise the next generation of intelligent constituents in the body politic. He says, “I thought about this a lot when I worked for the US Congress.  In addition to working with GLOBE, I now have a non-profit grant-making organization called YLACES with the objective of helping kids to learn science by doing science.  Young minds need to experience the scientific approach of developing hypotheses, taking careful, reproducible measurements, and reasoning with data. Inquiries should begin early and grow in quality and sophistication as learners progress in literacy, numeracy, and understanding scientific concepts. In addition to fostering critical thinking skills, active engagement in scientific research at an early age also builds skills in mathematics and communications. These kids will grow up knowing how to think scientifically. They’ll ask better questions, and they’ll be harder to fool.   I think that’s what the world needs, and I see the environment and science as the easiest path to get there.”

Learn more about GLOBE and its database here and about YLACES at www.ylaces.org.

Get more information on applied environmental research in our

New Weather Station Technology in Africa-3

The Trans African Hydro and Meteorological Observatory (TAHMO) project expects to put 20,000 microenvironment monitors over Africa in order to understand the weather patterns which affect that continent, its water, and its agriculture. In the conclusion of our 3-part series, we interview Dr. John Selker about his thoughts on the project.

TAHMO

The economics of weather data value may be going up because we’re reaching a cusp in terms of humanity’s consumption of food.

In your TEDx talk you estimate that US weather stations directly bring U.S. consumers  31 billion dollars in value per year. Can Africa see that same kind of return?

Even more.  The economics of weather data value may be going up because we’re reaching a cusp in terms of humanity’s consumption of food.  Africa, one could argue, is the breadbasket for this coming century.  Thus, the value of information about where we could grow what food could be astronomical.  It’s very difficult to estimate.  One application of weather data is crop insurance.  Right now, crop insurance is taking off across Africa. The company we’re working with has 180,000 clients just in Kenya.  When we talked about 31 billion dollars in the U.S., that is the value citizens report, but you need to add to that protection against floods, increased food production, water supply management, crop insurance and a myriad of other basic uses for weather data.  In Africa, the value of this type of protection alone pays for over 1,000 times the cost of the weather stations.

Another application for weather data is that in Africa, the valuation of land itself is uncertain. So if, because of weather station data, we find that a particular microclimate is highly valuable, suddenly land goes from having essentially no value to becoming worth thousands of dollars per acre.  It’s really difficult to estimate the impact the data will have, but it could very well end up being worth trillions of dollars.  We have seen this pattern take place in central Chile, where land went from about $200/hectare in 1998 to over $3,000/ha now due to the understanding that it was exceptionally suited to growing pine trees, which represented a change in land value exceeding $3 billion.

Does the effect of these weather stations go beyond Africa?

There’s limited water falling on the earth, and if you can’t use weather data to invest in the right seeds, the right fertilizer, and plant at the right time in the right place, you’re not getting the benefit you should from having tilled the soil.  So for Africa the opportunity to improve yields with these new data is phenomenal.  

In terms of the world, the global market for calories is now here, so if we can generate more food production in Africa, that’s going to affect the price and availability of food around the world.  The world is one food community at this point, so an entire continent having inefficient production and ineffective structures costs us all.

TAHMO

If we can generate more food production in Africa, that’s going to affect the price and availability of food around the world.

You’re collecting data from Africa. Is it time to celebrate yet?

I think this is going to be one of those projects where we are always chilling the champagne and never quite drinking it.  It is such a huge scope trying to work across a continent.  So I would say we’ve got some stations all over Africa, we’re learning a lot, and we’ve got collaborators who are excited.  We have reason to feel optimistic.  It will be another five years before I’ll believe that we have a datastream that is monumental.  Right now we’re still getting the groundwork taken care of.  By September of this year we expect to have five hundred of stations in place, and then two years from now, over two thousand. This will be a level of observation that will transform the understanding of African weather and climate.

TAHMO

This is a project of hundreds of people across the world putting their hands and hearts in to make this possible.

How do you deal with the long wait for results?  

In science, there is that sense you get when you want to know something, and you can see how to get there.  You have a theory, and you want to prove it.  It kind of captures your imagination.  It’s a combination of curiosity and the potential to actually see something happen in the world: to go from a place where you didn’t know what was going on to a place where you do know what’s going on.  I think about Linus Pauling, who made the early discoveries about the double helix.  He had in his pocket the X-ray crystallography data to show that the protein of life was in helical form, and he said, “In my pocket, I have what’s going to change the world.”  When we realized the feasibility of TAHMO, we felt much the same way.”  

Sometimes in your mind, you can see that path: how you might change the world.  It may never be as dramatic as what Pauling did, but even a small contribution has that same excitement of wanting to be someone who added to the conversation, who added to our ability to live more gracefully in the world.  It’s that feeling that carries you along, because in most of these projects you have an idea, and then ten years later you say, “why was it that hard?”  

Things are usually much harder than your original conception, and that energy and curiosity really helps you through some of the low points in your projects.  So, curiosity has a huge influence on scientific progress.  Changing the world is always difficult, but the excitement, curiosity, and working with people, it all fits together to help us draw through the tough slogs.  In TAHMO, I cannot count the number of people who have urged us to keep the effort moving forward and given a lift just when we needed it most.  This is a project of hundreds of people across the world putting their hands and hearts in to make this possible.  Having these TAHMO supporters is an awesome responsibility and concrete proof of the generosity and optimism of the human spirit.

Learn how you can help TAHMO.

See performance data for the ATMOS 41 weather station.

New Weather Station Technology in Africa (Part 2)

Weather data improve the lives of many people. But, there are still parts of the globe, such as Africa, where weather monitoring doesn’t exist (see part 1). John Selker and his partners intend to remedy the problem through the Trans African Hydro Meteorological Observatory (TAHMO).  Below are some challenges they face.

weather station

TAHMO aims to deploy 20,000 weather stations across the continent of Africa in order to fill a hole that exists in global climate data.

Big Data, Big Governments, and Big Unknowns

Going from an absence of data to the goal of 20,000 weather stations offers hope for positive changes. However, Selker is still cautious. “Unintended consequences are richly expressed in the history of Africa, and we worry about that a lot. It’s an interesting socio-technical problem.”  This is why Selker and others at TAHMO are asking how they can bring this technology to Africa in a way that fits with their cultures, independence, and the autonomy they want to maintain. 

TAHMO works with the government in each country stations are deployed in; negotiating agreements and making sure the desires of each recipient country are met. Even with agreements in place, the officials in each country will do what is in the best interest of the people: a gamble in countries where corruption is a factor which must be addressed. Selker illustrates this point by recalling an instance in 1985 when he witnessed a corrupt government official take an African farmer’s land because the value had increased due to a farm-scale water development project.

Most TAHMO weather stations are hosted and maintained by a local school, making it available as an education tool for teachers to use to teach about climate and weather. Data from TAHMO are freely available to the government in the country where the weather station is hosted, researchers who directly request data, and to the school hosting and maintaining the weather station. Commercial organizations will be able to purchase the data, and the profits will be used to maintain and expand the infrastructure of TAHMO.

weather station

Selker says it’s all about collaboration.

Terrorism, Data, and Open Doors

“When I wanted to go out and put in weather stations, my wife said, ‘No, you will not go to Chad.’ … because it is Boko Haram central,” Selker says.

The Boko Haram— a terrorist organization that has pledged allegiance to ISIS— creates an uncommon hurdle. Currently, the Boko Haram is most active in Nigeria, but has made attacks in Chad, Cameroon, and Niger.

Selker also mentioned similar issues with ISIS, “When ISIS came through Mali, the first thing they did is destroy all the weather stations. So they have no weather data right now in Mali.” Acknowledging the need for security, he adds, “we’re  completing the installation of  eight stations [in Mali] in April.”

“We have good contacts [in Nigeria] and they’re working hard to get permission to put up stations right now in that area. We’ve shipped 15 stations which are ready to install. With these areas we can’t go visit, it’s all about collaboration. It’s about partners and people you know. We have a partnership with a tremendous group of Africans who are really the leading edge of this whole thing.”

weather station

Most TAHMO weather stations are hosted and maintained by a local school.

A Hopeful Future

Despite the challenges of getting this large-scale research network off the ground, Selker and his group remain hopeful.  About his weather data he says, “It’s not glamorous stuff, you won’t see it on the cover of magazines, but these are the underpinnings of a successful society.”

Selker optimistically adds, “We are in a time of incredible opportunity.”

Learn more about TAHMO

Next Week:  Read an interview with Dr. John Selker on his thoughts about TAHMO.

See performance data for the ATMOS 41 weather station.

Soil Moisture: An Important Parameter in Weather Monitoring

CoCoRaHS and Weather Monitoring

Each time a rain, hail, or snow storm crosses over your area, volunteers are taking precipitation measurements that are then used to analyze situations ranging from water resource availability to severe storm warnings.  

water-815271_640

CoCoRaHS precipitation data is used by many high profile organizations.

CoCoRaHS (Community Collaborative Rain, Hail and Snow Network) is a non-profit community-based network of volunteers of all ages and backgrounds working together to measure and map precipitation (rain, hail, and snow).  Their data is used by the National Weather Service, meteorologists, hydrologists, emergency managers, city utilities, USDA, engineers, farmers, and more.  The organization will soon add another layer to their weather-monitoring efforts:  soil moisture measurement.

high-water-1519072_640

In 1997, a localized flooding event in Fort Collins, Colorado was not well-warned due to lack of high-density precipitation observation.

Why Soil Moisture?

CoCoRaHS originated as the brain child of Nolan Doesken, the state climatologist of Colorado,  in 1997 in response to a localized flooding event in Fort Collins, CO that was not well-warned due to lack of high-density precipitation observations.  Ten years ago the Colorado Climate Center began a partnership with the National Integrated Drought Information System to establish the first regional drought early warning system. This particular system would serve the Upper Colorado River Basin and eastern Colorado.

From the beginning, Nolan was thinking about soil moisture.  He says, “When we first started this project, we identified one weakness of the current climate monitoring systems as the inability to quantitatively assess soil moisture.  Soil moisture is critical as it affects both short-term weather forecasts and long-term seasonal forecasts, which are important for drought early warning and avoiding the agricultural consequences of too much or too little soil moisture.”It wasn’t until years later in the drought of 2012, which developed rapidly in the mid and late spring across the intermountain west and central plains that Nolan began planning to use CoCoRaHS as a vehicle for improving the soil moisture aspect of drought early warning.

track-828580_640

The organization intends to measure soil moisture using the gravimetric method.

How Will Volunteers Measure Soil Moisture?

Historically, CoCoRaHS has had success using low-cost measurement tools, stressing training and education, and using an interactive website to provide the highest quality data, and soil moisture will be no different.  The organization intends to measure soil moisture using the gravimetric method, where the user will take samples using a soil ring, dry samples in their own oven, and measure sample weight with an electronic scale. Peter Goble, a research assistant at Colorado State, has developed the measurement protocols that volunteers will follow.  He says, “We have installed several different types of soil sensors and tried gravimetric techniques in a field next to the center, and our experience has helped us set up a protocol that gets observers as educated as they can be by the time they take their measurements. The coring device we use is something that came about through trial and error. We were trying to reconcile the fact that we really wanted deeper root zone measurements in order to satisfy drought early-warning-system users, and the need for an inexpensive set of standardized materials that we could send out to observers in a kit.”  Volunteers will take soil samples at each point in a grid pattern, both at the surface and at the 7-9 inch level near the root zone.

What will Happen to the Data?

Initially, while the program is in its test phase, the data will be put in a spreadsheet and shared. However, once CoCoRaHS has finished sending this protocol around the nation to a group of alpha testers, they’ll set up a website infrastructure enabling volunteers to enter their VWC data directly into the CoCoRaHS website.

The need for soil moisture measurement in weather monitoring will outweigh the volunteers’ ability to measure, but there is a solution.

The need for soil moisture measurement in weather monitoring will outweigh the volunteers’ ability to measure, but there is a solution.

Why the Gravimetric Method?

Nolan says the challenge of water content is that soil is highly variable across space.  And if you add issues like sensor performance, improper installation of sensors, problems with soil contact, changes in bulk density, and soil compaction, you end up with inconsistent data.  The gravimetric method will avoid inconsistencies in spatial measurements and ensure higher quality data.

An Overwhelming Task

Nolan says the need for soil moisture measurement in weather monitoring will outweigh the volunteers’ ability to measure, but there is a solution. “People who use soil moisture data in atmospheric applications need high resolution, gridded information in every square kilometer across the country, but it will happen through modeling.  The measurements we take of precipitation and soil moisture will help in the refinement of the weather modules the atmospheric scientists will use as input to their weather prediction models.”

Get more information on applied environmental research in our