Skip to content

Posts tagged ‘weather stations’

Why mesonets make weather prediction more accurate

The staggering cost of Montana’s “flash drought”

Some people figured it was climate change. One statistician said it was a part of a cyclical trend for poor crop years. Whatever the cause, the 2017 flash drought that parched the entire state of Montana and most of South Dakota, severely impacted the profitability of ranchers and farmers. In western Montana, fires burned some of the largest acreages in recent history. It resulted in one of the biggest wildfire incident reports (over one-million acres) and caused virtually 100% crop loss in northeastern Montana. The U.S. Dept. of Agriculture estimated the crop loss to be in the hundreds of millions of dollars, and one question was on everybody’s mind—why did no one see it coming?

Figure 1. Montana drought conditions August 2017 (Source: Montana State Library website: https://mslservices.mt.gov/Geographic_Information/Maps/drought/)

Getting the right weather data

The 2017 Montana Dept. of Natural Resources and Conservation spring drought report indicated plenty of water: “By the end of the month, almost all drought concern was removed from the state, with the exception of Wibaux and Fallon Counties….As of May 9, 2017, Montana was 98.45% drought free.” But in late May, an abrupt shift in weather conditions led to one of the hottest, driest summers on record.

The problem, says Kevin Hyde, Montana State Mesonet Coordinator, lies not only in the need for more weather data but in obtaining the right kind of data. He says, “One of the reasons drought was missed was because we’re still thinking you measure drought by snowpack and how much water is in the river, which is really great if you’ve got water rights. But we’ve got a lot of dryland out there.”

In addition to weather monitoring, Hyde is a big proponent of adding soil moisture and NDVI measurements to each of the Montana Mesonet stations he oversees. He says, “The conventional weather station only measures atmospheric conditions. But ultimately, to make any decisions, we’ve got to know not just how much water comes into the system, but how much goes into the soil. And even that’s not enough…because what we really need to know is how the water situation is going to affect plants.”

Hyde says more data are needed to warn growers and ranchers about upcoming weather risks. He points to the fact that increasing evapotranspiration got missed leading up to the summer of 2017. “We realized that if we were looking carefully at reference ET, we might have seen it about a month earlier. What would people have done? They would have changed their calf purchases. They would have figured out what kind of forage they needed to buy. These are the types of decisions people can make if they know the information sooner.”

Was the drought over? Soil moisture illuminates the bigger picture

Heavy rains came mid-September of 2017, which led some people to believe the drought was over. However, changes in soil moisture told a different story. Very little of the rain made it into the soil. “At the Havre, MT station you can see we had some heavy precipitation events. Then we had early October snows. So people expected good soil water recharge. But at the end of the day, we didn’t get it. On Sept.15th, soil moisture sensors showed a big soil moisture response at the surface but only a marginal response at 8 inches.” The melt of early October snows onto the soil, still damp from the September rain, drained to 20 inches or more. But as the snowmelt dissipated, there was minimal net gain going into the winter.

Figure 2. Soil moisture traces at the Havre, MT weather station

Predictive models need more coverage to be effective

Typically in the U.S., the National Weather Service (a division of NOAA) puts out a network of weather monitoring stations spaced out across the country, and that data gets fed into forward-looking models that help predict the weather. Dr. Doug Cobos, research scientist at METER says, “What people are finding out is that putting in a sparse network of very expensive systems has done really well. It’s been a good thing. But the spatial gaps in those networks are a problem, especially for agriculture producers and ranchers. They need to know what’s happening where they are.”

Hyde agrees, adding that we need better predictive tools that help growers and ranchers make practical decisions based on data rather than guessing. “January 1st is when the decision has to be made—do I buy cows? Do I sell cows? Do I need more pasture? But many predictions start on April 1st. As one rancher puts it, ‘We don’t bother with Las Vegas. We sit around the dining room table at the beginning of the year and put a million dollars on one shot.’”

Mesonets improve spatial distribution

Mesonets present a practical solution for the need to fill in data gaps between large, complex weather stations. The Montana Mesonet currently has 57 stations interspersed throughout the state, and through partnerships with both the public and private sector, they’re adding more stations every year.

Figure 3. Map of MT Mesonet weather stations (source: http://climate.umt.edu/mesonet/)

At each location, the Montana Mesonet team installs METER all-in-one weather stations, soil moisture sensors, NDVI sensors and data loggers that integrate with ZENTRA Cloud: an easy-to-use web software that seamlessly integrates into third-party applications through an API. He says the system enables better spatial distribution and reliability. “When we were deciding on equipment we asked ourselves: What kind of technology should we use? It had to provide high data integrity. It had to be easy to deploy and maintain. And it had to be cost effective. There’s not a lot of people in that sector. METER systems are low profile, they’re affordable, and the reliability is there. I look at some other mesonets, and they cannot afford to build out further because they are relying on large, complex, expensive systems. That’s where the METER system comes into play.”

Figure 4. Montana Mesonet station setup (Photo credit: Kevin Hyde)

Betting on the future

The Mesonet team and its partners are excited to see how their data will mesh with the available predictive tools to be the most useful and practical for growers and ranchers throughout the state, and they realize that there is still much work to do. “It’s not enough just to get the instrumentation out there. The overall crux is: how do we build the information network, and how do we build a relationship with the producers so that we can have an iterative and interactive conversation?” says Hyde. “We know there needs to be an education in how to use and interpret the data. For example: what is NDVI, and what can we learn from it? A lot of what we need to do is translate science into practical terms.” But he adds that it doesn’t need to be perfect. “What the farmers have said to us is, ‘We don’t need exact numbers. We’re gamblers. Give us probability. Teach us what it means, and we’ll make the decision.’”

Find more information on the Montana Mesonet here.

See performance data for the ATMOS 41 weather station.

Top Five Blog Posts in 2017

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2017.

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Soil moisture sensor

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system. Read more

Get More From your NDVI Sensor

Modern technology has made it possible to sample Normalized Difference Vegetation Index (NDVI) across a range of scales both in space and in time, from satellites sampling the entire earth’s surface to handheld small sensors that measure individual plants or even leaves.  Read more

Improved Methods Save Money in Future Borehole Thermal Energy Storage Design

Globally, the gap between the energy production and consumption is growing wider. To promote sustainability, University of California San Diego PhD candidate and ASCE GI Sustainability in Geotechnical Engineering committee member, Tugce Baser, Dr. John McCartney, Associate Professor, and their research team, Dr. Ning Lu, Professor at Colorado School of Mines and Dr. Yi Dong, Postdoctoral Researcher at Colorado School of Mines, are working on improving methods for borehole thermal energy storage (BTES), a system which stores solar heat in the soil during the summer months for reuse in homes during the winter. Read more

New Weather Station Technology in Africa

Weather data, used for flight safety, disaster relief, crop and property insurance, and emergency services, contributes over $30 billion in direct value to U.S. consumers annually. Since the 1990’s in Africa, however, there’s been a consistent decline in the availability of weather observations. Read more

Electrical Conductivity of Soil as a Predictor of Plant Response

Plants require nutrients to grow, and if we fail to supply the proper nutrients in the proper concentrations, plant function is affected. Fertilizer in too high concentration can also affect plant function, and sometimes is fatal.  Read more

And our three most popular blogs of all time:

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more

How to Measure Water Potential

In the conclusion of our three-part water potential series, we discuss how to measure water potential—different methods, their strengths, and their limitations. Read more

Do the Standards for Field Capacity and Permanent Wilting Point Need to be Reexamined?

We were inspired by this Freakonomics podcast, which highlights the bookThis Idea Must Die: Scientific Problems that are Blocking Progress, to come up with our own answers to the question:  Which scientific ideas are ready for retirement?  We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point. Read more

Get info on applied environmental research in our

See performance data for the ATMOS 41 weather station.

New Weather Station Technology in Africa (Part 2)

Weather data improve the lives of many people. But, there are still parts of the globe, such as Africa, where weather monitoring doesn’t exist (see part 1). John Selker and his partners intend to remedy the problem through the Trans African Hydro Meteorological Observatory (TAHMO).  Below are some challenges they face.

weather station

TAHMO aims to deploy 20,000 weather stations across the continent of Africa in order to fill a hole that exists in global climate data.

Big Data, Big Governments, and Big Unknowns

Going from an absence of data to the goal of 20,000 weather stations offers hope for positive changes. However, Selker is still cautious. “Unintended consequences are richly expressed in the history of Africa, and we worry about that a lot. It’s an interesting socio-technical problem.”  This is why Selker and others at TAHMO are asking how they can bring this technology to Africa in a way that fits with their cultures, independence, and the autonomy they want to maintain. 

TAHMO works with the government in each country stations are deployed in; negotiating agreements and making sure the desires of each recipient country are met. Even with agreements in place, the officials in each country will do what is in the best interest of the people: a gamble in countries where corruption is a factor which must be addressed. Selker illustrates this point by recalling an instance in 1985 when he witnessed a corrupt government official take an African farmer’s land because the value had increased due to a farm-scale water development project.

Most TAHMO weather stations are hosted and maintained by a local school, making it available as an education tool for teachers to use to teach about climate and weather. Data from TAHMO are freely available to the government in the country where the weather station is hosted, researchers who directly request data, and to the school hosting and maintaining the weather station. Commercial organizations will be able to purchase the data, and the profits will be used to maintain and expand the infrastructure of TAHMO.

weather station

Selker says it’s all about collaboration.

Terrorism, Data, and Open Doors

“When I wanted to go out and put in weather stations, my wife said, ‘No, you will not go to Chad.’ … because it is Boko Haram central,” Selker says.

The Boko Haram— a terrorist organization that has pledged allegiance to ISIS— creates an uncommon hurdle. Currently, the Boko Haram is most active in Nigeria, but has made attacks in Chad, Cameroon, and Niger.

Selker also mentioned similar issues with ISIS, “When ISIS came through Mali, the first thing they did is destroy all the weather stations. So they have no weather data right now in Mali.” Acknowledging the need for security, he adds, “we’re  completing the installation of  eight stations [in Mali] in April.”

“We have good contacts [in Nigeria] and they’re working hard to get permission to put up stations right now in that area. We’ve shipped 15 stations which are ready to install. With these areas we can’t go visit, it’s all about collaboration. It’s about partners and people you know. We have a partnership with a tremendous group of Africans who are really the leading edge of this whole thing.”

weather station

Most TAHMO weather stations are hosted and maintained by a local school.

A Hopeful Future

Despite the challenges of getting this large-scale research network off the ground, Selker and his group remain hopeful.  About his weather data he says, “It’s not glamorous stuff, you won’t see it on the cover of magazines, but these are the underpinnings of a successful society.”

Selker optimistically adds, “We are in a time of incredible opportunity.”

Learn more about TAHMO

Next Week:  Read an interview with Dr. John Selker on his thoughts about TAHMO.

See performance data for the ATMOS 41 weather station.