Skip to content

Posts by Chris Chambers

Snapdragons and soil moisture sensors

Charles Bauers has been a hydroponic snapdragon grower for 17 years. He knows—in detail—how to produce a good snap. But five years ago, he needed a better way to measure water.

Soil sensors optimize irrigation for improved quality and profit

“We had no quantitative way to measure water. That was the limiting factor for me,” he explains. Other inputs, like fertilizer, were quantifiable, but Bauers still depended on “gut feel” for watering, and no matter how quickly he reacted to changes in the crop, he couldn’t consistently produce grade-one snapdragons.

He wanted a scale, a “recipe of numbers” that would let him produce a good crop all the time in all sections of the greenhouse.

“There are always areas that seem to produce good quality flowers, and then there are areas that are a bit more of a challenge. I installed METER soil moisture sensors in the good areas and the stressed areas and compared the two. Then I worked my stressed areas up to the same numbers.”

The TEROS 12 is well-suited for greenhouse applications

Snapdragons are very sensitive to moisture stress. “It’s a ten-week crop. If you don’t get the moisture right in the first two weeks, you can compromise that crop.”

Identifying irrigation set points

The soil moisture sensors made a huge difference in Bauers’s ability to get the moisture right.  “They give me, targeted set points that I can shoot for all the time, and if I hit the targeted set point, I know I’m going to have good quality snaps, barring any other type of stress.

Grade-one snapdragons are worth 40% more than grade twos, and the difference between the two is created by “incipient stress—water stress that you can’t measure with your fingers. You can’t see it, you can’t feel it, it’s stress at the root. There’s a difference between a 28% vwc [volumetric water content] and a 23% vwc. It’s only 5%, but one produces grade ones and one produces grade twos.”

Empowered with real-time information

Moisture sensors gave Bauers real-time information that helped him get the watering right in every part of the greenhouse.  “I became more consistent because I had a number to go at. Because we’re a hydroponic crop, we see the effects real quick, and I’d say ‘I just have to add a little more water here.’ But [before the sensors,] invariably we had areas that were stressed because you really never knew when you had enough water on that crop. With sensors, you can consistently put the right amount of water on all the time.”

Soil sensors helped identify and prevent irrigation problems

Bauers quickly became adept at using sensors to address his irrigation challenges. The sensors showed him where his irrigation system was broken or underperforming, helped him identify problems like a root growing into a drip tube, or an unplugged dripper. But as the sensors became part of his routine, he was surprised to discover a new opportunity.

“Besides giving me the real-time information, the sensors gave me the ability to look at trends…over a week or a month and be proactive if we started moving away from our set point. We could add more water, set shorter run times, or just make some changes in the irrigation system to get more in line with the set points. That was one of my biggest surprises, how well we were able to be proactive toward environmental changes using the trending of the charts. That was a bonus.”

Reducing production and labor costs

After five years of daily monitoring, Bauers is now ready to go to an even higher level. “The next huge area we see sensors in is as big, or bigger, than the actual growing of the plant itself. We’re going to use these sensors to guide us as we strip out all excess production costs, and that’s happening today. As an example, over the next five months we’ll be trimming our substrate use by 85%. Not only do we save on materials, but if you have 85% less substrate to work with or move, you reduce labor costs.”

In fact, the sensors have become an integral part of how Bauers does business. I asked him how he would feel if he lost them. “My gosh,” he said, “It would be like going back ten years. It would be like trying to measure the temperature in a room without a thermometer. We are totally dependent on them.”

Learn more

Watch: How to improve irrigation scheduling using soil moisture—>

See all irrigation webinars—>

Download the “Complete guide to irrigation management”—>

Water potential sensors improve peanuts, cotton, and corn irrigation

Ron Sorensen, a researcher at the National Peanut Research Laboratory in Georgia, is working to help small-scale peanut, corn, and cotton farmers in Georgia optimize irrigation.

Image of a cotton field in southern U.S

Cotton field in southern U.S.

Shallow subsurface drip irrigation is a very economical alternative for these farmers. “If you can put in a pivot, most of those are already in,” says Sorensen. What he’s working with are “small, irregularly shaped fields that go around swamps or in trees or backwoods where they might have 10 to 15 acres that used to be an old farmstead.”

Sorensen helps revitalize these old farmsteads by revamping old wells and plowing in drip tape. In many cases, farmers can have water running the same day they start the project.

Subsurface drip offers significant benefits to these farmers. “What I like about drip is that…I can fill up the soil profile, and I know I can fill it up. With the pivot, I’m putting out water today, and I may be coming back two days later and doing it again,” Sorensen says. “And I’m putting all this water on the leaves, creating the incidence for disease… With cotton, you can actually wash the pollen out of the flowers, and you won’t set a boule. There you’re losing yield. Whereas with drip, you can turn it on, you’re never wetting leaves, you’re getting full pollination… I’m an advocate for drip on small irrigated fields.

Image of a tractor plowing a field

“Irrigating down here [using diesel-powered irrigation pumps] is upwards of $11 an acre any time the farmer turns it on. So if he can wait a day, he’s saved that irrigation.”

“I love pivots on big fields, but we have to manage the water correctly. Farmers are starting to see that. We can save the farmer money, save him time, save him labor. Those…are all side benefits of irrigating correctly,” says Sorensen.

As farmers begin to see the benefits of efficient irrigation, Sorensen’s challenge is to help them know when to water and how much water to put on.

Sorensen is at the end of his third year gathering data with METER water potential sensors. He buries sensors at 10- and 20-inch depths in three separate plots, then irrigates when the average water potential reaches -40, -60, and -80 kPa respectively.

“We started in corn, because we know it has a shallow root system, and when you don’t irrigate corn, you don’t get any yield.” Initially, they allowed the profile to dry out to -120 kPa, but “we discovered it doesn’t work. We weren’t ever irrigating, and we had really bad yields. -120 was much too dry, and we cut back to -40, -60, and -80.”

The researchers used water potential readings with moisture release curves to determine how much water to add to bring the profile to field capacity.

Image of a researcher using a TEROS 21 sensor

METER TEROS 21 water potential sensor

They found that allowing the soil to dry to -60 allowed them to save water without impacting yields in corn. Cotton and peanuts are a different—and more complex—story.  “Both cotton and peanut, if you don’t get any rain or water, they just hunker down, and when you do get a rainstorm, they flourish. When the rainfall comes at a funny time, it changes everything,” Sorensen explains.

Take this year, for example. Until the first of June, Sorensen’s plots got very little rain. Then from June to the end of July, he got 24 – 26 inches. “All the differences between our plots are just gone. Irrigated is the same as the non-irrigated because by the time we started to irrigate, it started raining.”

Despite this setback, Sorensen is confident that the data will ultimately help produce a reliable irrigation tool for farmers. His goal is to add a drip irrigation module to Irrigator Pro, a computer program currently used by pivot irrigators.

He is working with several farmers who already use sensors in conjunction with the Irrigator Pro model. “They can use the computer model as a guess to get close, and then they can use a sensor to really get down to the exact day,” he says. And in Georgia, the exact day can matter quite a bit.

“What it comes down to is: Do I need to turn the pump on or not?” he explains. “Irrigating down here [using diesel-powered irrigation pumps] is upwards of $11 an acre any time the farmer turns it on. So if he can wait a day, and if we have one of these gulf storms come through, and the farmer gets 3/4 inch of rain, he’s saved that irrigation.

“And if you can save two, three, maybe four irrigations a year, we’re conserving water, we’re making the farmer more sustainable, and he can take that money and reinvest it into his farm, or into his children, or wherever he wants to put it. And that makes it so we have food on the table, clothes on our backs, cotton, corn, or peanuts, we’ve got food to eat.”

Learn more

Download the “Complete guide to irrigation management”—>

Discover METER water potential sensors

Download the “Researcher’s complete guide to water potential”—>

Founders of Environmental Biophysics: Walter Gardner

Visualizing water flow in soil

This week, in our “Founders” series, we highlight a soil physicist.

Image of soil being held in a researchers hand

Water movement in soil defies intuition

When Dr. Walter Gardner passed away in June (2015), many viewed the film Water Movement in Soils as one of the main accomplishments of a remarkable career. Dr. Gardner and Jack Hsieh made the film in 1959 at Washington State University. The technology they used was impressive—it was years before advanced electronics would make time lapse movies routine—but Dr. Gaylon Campbell finds the ideas behind the experiments even more remarkable.

“Once you’ve seen the film, you can go back to the unsaturated flow theory and see how it would work,” Campbell says, “but the ideas aren’t really obvious. I wish I knew how he thought of doing that.”

At one point in the film, Gardner himself says that the phenomena he illustrates in the film can be seen in nature “if one observes carefully.” It’s possible that some of these careful observations were made in the fields around Washington State University, where farmers often turned the surface layer of soil over using a moldboard plow. This created a layer of surface soil with a layer of straw underneath it—exactly the conditions Gardner describes in the film as leading to erosion, reduced water in the root zone, and damage to the soil in the plow zone.

Though agriculture was the obvious target of the film, for a while it was also a big hit with the US Golf Association. Golf greens are mown short and get a lot of abuse. They need to be watered and fertilized heavily, but how do you keep enough water on the plants between irrigations without leaching nutrients out of the root zone? Water Movement in Soils provides a perfect answer. Gardner consulted for the USGA and used his film to train people who designed and constructed the greens.

Water movement in soil defies intuition

Our intuitions about how water moves in soil are often wrong. More than fifty years after it was made, this classic film still has the power to help people understand what’s really going on.

Watch the video

 

Learn more

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential

IoT Technologies for Irrigation Water Management (Part 2)

Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, continues (see part 1) to discuss the strengths and limitations of  IoT technologies for irrigation water management.

Grapes being irrigated

Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and at a reasonable cost.

LoRaWAN (a vendor-managed solution see part 1) is ideal for monitoring applications where sensors need to send data only a couple of times per day with very high battery life at a very low cost. Cellular IoT, on the other hand, works best for agricultural applications where sensors are required to send data more frequently and irrigation valves need to be turned on/off. Low-Power Wide-Area Networking (LPWAN) technologies need gateways or base stations for functioning. The gateway uploads data to a cloud server through traditional cellular networks like 4G. Symphony Link has an architecture very similar to LoRaWAN with higher degree of reliability appropriate for industrial applications. The power budget of LTE Cat-M1 9 (a network operator LPWAN) is 30% higher per bit than technologies like SigFox or LoRaWAN, which means more expensive batteries are required. Some IoT technologies like LoRa and SigFox only support uplink suited for monitoring while cellular IoT allows for both monitoring and control. LTE-M is a better option for agricultural weather and soil moisture sensor applications where more data usage is expected.

NB-IoT is more popular in EU and China and LTE Cat-M1 in the U.S. and Japan. T-Mobile is planning to deploy NB-IoT network in the U.S. by mid-2018 following a pilot project in Las Vegas. Verizon and AT&T launched LTE Cat-M1 networks last year and their IoT-specific data plans are available for purchase. Verizon and AT&T IoT networks cover a much greater area than LoRa or Sigfox. An IoT device can be connected to AT&T’s network for close to $1.00 per month, and to Verizon’s for as low as $2 per month for 1MB of data. A typical sensor message generally falls into 10-200 bytes range. With the overhead associated with protocols to send the data to the cloud, this may reach to 1KB. This can be used as a general guide to determine how much data to buy from a network operator.

Fruit on a tree branch

Studies show there is a potential for over 50% water savings using sensor-based irrigation scheduling methods.

What the future holds

Many startup companies are currently focused on the software aspect of IoT, and their products lack sensor technology. The main problem they have is that developing good sensors is hard. Most of these companies will fail before the batteries of their sensors die. Few will survive or prevail in the very competitive IoT market. Larger companies that own sensor technologies are more concerned with the compatibility and interoperability of these IoT technologies and will be hesitant to adopt them until they have a clear picture. It is going to take time to see both IoT and accurate soil/plant sensors in one package in the market.  

With the rapid growth of IoT in other areas, there will be an opportunity to evaluate different IoT technologies before adopting them in agriculture. As a company, you may be forced to choose specific IoT technology. Growers and consultants should not worry about what solution is employed to transfer data from their field to the cloud and to their computers or smartphones, as long as quality data is collected and costs and services are reasonable. Currently, some companies are using traditional cellular networks. It is highly likely that they will finally switch to cellular IoT like LTE Cat-M1. This, however, may potentially increase the costs in some designs due to the higher cost of cellular IoT data plans.

IoT Technologies Chart

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to SDI-12″—>

Get more info on applied environmental research in our

Learn more

Download the “Complete guide to irrigation management”—>

IoT Technologies for Irrigation Water Management

Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, discusses where and why IoT fits into irrigation water management. In addition, he explores possible price, range, power, and infrastructure road blocks.

Wireless sensor networks and irrigation lines in a field

Wireless sensor networks collect detailed data on plants in areas of the field that behave differently.

Studies show there is a potential for water savings of over 50% with sensor-based irrigation scheduling methods. Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and a reasonable cost. Wireless sensor networks can collect data on plants in a lot of detail in areas of the field that behave differently. The need for wireless sensors and actuators has led to the development of IoT (Internet of Things) solutions referred to as Low-Power Wide-Area Networking or LPWAN. IoT simply means wireless communication and connecting to some data management system for further analysis. LPWAN technologies are intended to connect low-cost, low-power sensors to cloud-based services. Today, there are a wide range of wireless and IoT connectivity solutions available raising the question of which LPWAN technology best suits the application?

IoT Irrigation Management Scenarios

The following are scenarios for implementing IoT:

  1. buying a sensor that is going to connect to a wireless network that you own (i.e., customer supplied like Wi-Fi, Bluetooth),
  2. buying the infrastructure or at least pieces of it to install onsite (i.e., vendor managed LPWAN such as LoRaWAN, Symphony Link), and
  3. relying on the infrastructure from a network operator LPWAN (e.g., LTE Cat-M1, NB-IOT, Sigfox, Ingenu, LoRWAN).

This is how cellular network operators or cellular IoT works. LPWAN technology fits well into agricultural settings where sensors need to send small data over a wide area while relying on batteries for many years. This distinguishes LPWAN from Bluetooth, ZigBee, or traditional cellular networks with limited range and higher power requirements. However, like any emerging technology, certain limitations still exist with LPWAN.

Apple orchard

Individual weather and soil moisture sensor subscription fees in cellular IoT may add up and make it very expensive where many sensors are needed.

IoT Strengths and Limitations

The average data rate in cellular IoT can be 20 times faster than LoRa or Symphony Link, making it ideal for applications that require higher data rates. LTE Cat-M1 (aka LTE-M), for example, is like a Ferrari in terms of speed compared to other IoT technologies. At the same time, sensor data usage is the most important driver of the cost in using cellular IoT. Individual sensor subscription fee in cellular IoT may add up and make it very expensive where many sensors are needed. This means using existing wireless technologies like traditional cellular or ZigBee to complement LPWAN. One-to-many architecture is a common approach with respect to wireless communication and can help save the most money. Existing wireless technologies like Bluetooth LE, WiFi or ZigBee can be exploited to collect in-field data. In this case, data could be transmitted in-and-out of the field through existing communication infrastructure like a traditional cellular network (e.g., 3G, 4G) or LAN. Alternatively, private or public LPWAN solutions such as LoRaWAN gateways or cellular IoT can be used to push data to the cloud. Combination of Bluetooth, radio or WiFi with cellular IoT means you will have fewer bills to pay. It is anticipated that, with more integrations, the IoT market will mature, and costs will drop further.

Many of LPWAN technologies currently have a very limited network coverage in the U.S. LTE Cat-M1 by far has the largest coverage. Ingenu, which is a legacy technology, Sigfox and NB-IOT have very limited U.S. coverage. Some private companies are currently using subscription-free, crowd-funded LoRaWAN networks to provide service to U.S. growers: however, with a very limited network footprint. Currently, cellular IoT does not perform well in rural areas without strong cellular data coverage.

In two weeks: Dr. Osroosh continues to discuss IoT strengths and limitations in part 2.

Download the “Researcher’s complete guide to soil moisture”—>

Get more info on applied environmental research in our

Assessing Erosion Risk after Forest Fires

As forest fires throughout the Northwest die down, one scientist’s work is just beginning.  An article from our archives details the important research that takes place in the aftermath of the flames:

Forest on fire with sun shining through the smoke

In 2015, over eight million acres of forest burned in the United States. Major fires burned in five northwestern states: Washington, Idaho, Montana, Oregon, and California.

Flagstaff, Arizona is typically a dry place. But in August 2010, churning rivers flowed down roadways and around—and through—homes in the Flagstaff area. The floods were caused by a fire—the 15,000 acre Shultz fire that raged around Flagstaff from April to July, 2010.

One might not ordinarily think of a fire causing a flood, but to Forest Service research engineer Dr. Peter Robichaud, the setup is classic. “After a fire, you’ve changed the hydrology of the hillside,” he says. “Normally in an unburned area, rain gets soaked up by forest floor material on the ground and then it soaks into the soil. After a fire goes through, there’s no forest floor material to soak up the water and the soil may become water repellent due to heat from the fire.”

Reduced infiltration means increased runoff and erosion. As Robichaud explains, “If you have a steep slope and high velocities, along with very erodible soil, things converge rather quickly and you can generate debris flows and mudslides.  It’s not just a 100% increase. It’s orders of magnitude increase.”

Burned trees standing in a swampy area covered in water

After a fire, soil commonly becomes hydrophobic, just one factor in increased runoff.

One of Robichaud’s research interests is in designing a model for post-fire erosion. The model helps land managers and assessment teams in the field to evaluate the risks such erosion might pose. “It lets them see what might be affected if they have an erosion event,” he says.

“Is it going to affect the municipal water supply, affect a road crossing, an interstate highway, a school that happens to be at the mouth of a canyon? Once they can estimate the amount of erosion that might occur, they can use the model to help pick treatments to reduce the risk.”

Often practitioners will use the model to establish an early warning system to areas that will be affected.

Along with developing the model, Robichaud has also looked for ways to help postfire assessment teams gauge the water repellency of the soil after a fire. Historically, soil in a burned area was evaluated using the water drop penetration time test, or WDPT. Team members would place a drop of water on the surface of the soil and time how long it took to be absorbed. This seventies-era test was easy to do in the field, but Robichaud wanted something more representative.

Trees and a street covered in a pool of water

One of Robichaud’s research interests is in designing a model for post-fire erosion to help land managers and assessment teams in the field evaluate the risks such erosion might pose.

“I’ve always felt we could do a better job of characterizing the changes in soil condition,” he says. “[The WDPT] doesn’t really represent the physical process of the water infiltrating, because you put a single drop of water on the surface… The ideal method is a rainfall simulator, but it’s not practical in the field. [You] can’t expect every assessment team after a fire to set up a rainfall simulator for a couple of weeks.”

As he looked for alternatives, Robichaud started using a Mini Disk Infiltrometer. Practitioners all over the world use infiltration measurements along with Robichaud’s model of post-fire erosion to assess the impacts of a fire, predict erosion, and make plans to manage and reduce the associated risks. Robichaud’s online Erosion Risk Management Tool allows researchers and assessment teams alike to use scientifically solid analysis. He’s currently involved in refining and validating the model, improving assessment techniques, using remote sensing technology to perform assessments, and looking at alternative post-fire treatment options to reduce erosion risk, among other things.

To see what Dr. Robichaud’s been up to recently, read his 2014 paper, The temporal evolution of wildfire ash and implications for post-fire infiltration, published in the International Journal of Wildland Fire.   Find out more about Robichaud’s research, methods for use of the Mini Disk Infiltrometer for changes in infiltration characteristics after fire, or access the Erosion Risk Management Tool, by visiting the Moscow Forest Sciences Laboratory website.

Learn more about wildfire and soil moisture

See how soil moisture information could improve assessments of wildfire probabilities and fuel conditions, resulting in better fire danger ratings here.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Understanding Avalanches: Thermal Conductivity of Snow (Part 2)

In a continuation of last week’s article “Understanding Avalanches,” we find out what conclusions Dr. Ed Adams and his colleagues in Montana State University’s avalanche studies program were able to make about measuring the thermal conductivity of snow.

Picture of a snow-capped mountain peak

In order to study the thermal properties of snow samples, the research team wanted a way to measure thermal conductivity in three directions.

In order to study the thermal properties of snow samples, the research team wanted a way to measure thermal conductivity in three directions. That ruled out flux plates. Thermal probes were an obvious alternative, but they brought a different set of challenges. Snow has a very low thermal conductivity, and as Shertzer explains, “if you add a lot of thermal energy to snow, since it’s very insulative, you’ll tend to raise the temperature. Not only do we want to avoid melting the snow in the neighborhood of the probe, but we want to prevent the probe from artificially inducing the same thermal processes we’re measuring—the ones that cause the crystals to change size, and shape, and orientation.”

Shertzer read an article about measuring thermal conductivity in liquids, where if you add too much heat, you induce convection. “Our situation is similar to that,” he explains. “Heating the needle induces local phase change.” The article gave him some ideas about delivering low levels of heat for a relatively long period of time, and he contacted Decagon to see if that option was a possibility.

Snow barriers in the Alps

Snow barriers in the Alps

Unbeknownst to him, Decagon’s research scientists had just completed a year-long project focused on reducing the contact resistance errors that occur when using the large TR1 needle to measure thermal conductivity in large-grained samples.  This made the TR1 needle a good candidate for measuring thermal conductivity in snow. The scientists were excited about modifying TEMPOS firmware to produce a low-power version that would work in snow. The resulting modification has given Shertzer some good data.

“I can definitely say that the anisotropy is there [in the snow samples]. It’s measurable and it’s significant. As the crystals reorient in these depth hoar like chains, the ice network is more conductive than the air in between. The orientation of the chains follows a direction of increased conductivity, and the directions that are perpendicular to the chains tend to decrease in conductivity. Qualitatively, it’s always made sense, and we were just looking for a way to actually relate it to properties like conductivity. Using needles to measure in three different directions simultaneously has given us the ability to measure those properties like conductivity. We expect that this orientation also affects other properties like strength and stiffness.”

Researchers stand at a sign of an avalanche

Signs of an avalanche

Thermal conductivity studies may ultimately lead to a better understanding of the conditions that cause the snowpack to fracture and trigger an avalanche—and information that may help save lives among the growing number of people who ski and snowboard the backcountry.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Understanding Avalanches: Thermal Conductivity of Snow (Part 1)

Reading through our archives the other day, I came across this article about thermal conductivity and snow. It’s a unique application for a thermal properties analyzer, an interesting story, and something that may ultimately even save the lives of backcountry skiers and snowboarders.

Researcher climbing a snowy mountain while snow blows off a mountain in the distance

Rich Shertzer, who finished a PhD in the program at Montana State, thinks snow may be unique among natural materials because “the thermal environment it’s exposed to every day can cause pretty remarkable changes in its microstructure.”

When Wired Magazine wrote up Dr. Ed Adams and his colleagues in February 2011, they didn’t refer to them as a team of civil engineers studying granular mechanics. Instead, they named them one of seven teams of “Mad Scientists” and called them “Snow Bombers.”

It’s not hard to find articles about Montana State University’s avalanche studies program. Just describing a typical field study makes for a good story: to investigate real-world avalanche conditions, MSU researchers sit in an outhouse-sized shack bolted to the side of a mountain while colleagues trigger an avalanche up-slope.

But this isn’t just a story about explosions and extreme sports. At its heart, it’s a story about the microstructure of a very fascinating and difficult material. Rich Shertzer, who finished a PhD in the program at Montana State, thinks snow may be unique among natural materials because “the thermal environment it’s exposed to every day can cause pretty remarkable changes in its microstructure.”  A cold, sunny day in the mountains can cause significant changes in snow crystals. It can change their size and shape, but more significantly it can cause a directional orientation in snow layers.

Snow laying on a mountain with tracks running down it

Signs of a recent avalanche.

It’s long been empirically understood that avalanches tend to form above “weak layers” of snow. Shertzer and his colleagues are studying how the orientation of snow crystals correlates with weak layers. Most models of granular mechanics assume that the material’s microstructure is randomly arranged. However, snow layers seem to show a regular arrangement.

As Shertzer explains, “Qualitatively, people have known for a while that when you look at certain snow layers, chains of these ice grains seem to be forming. What I was trying to mathematically model is how that might affect the material properties [of snow], including thermal properties.”

Avalanche running down Mt. Everest

Avalanche on Mt. Everest.

In order to study the thermal properties of snow samples, the research team wanted a way to measure thermal conductivity in three directions. That ruled out flux plates. Thermal probes were an obvious alternative, but they brought a different set of challenges. Snow has a very low thermal conductivity, and as Shertzer explains, “if you add a lot of thermal energy to snow, since it’s very insulative, you’ll tend to raise the temperature. Not only do we want to avoid melting the snow in the neighborhood of the probe, but we want to prevent the probe from artificially inducing the same thermal processes we’re measuring—the ones that cause the crystals to change size, and shape, and orientation.”

Read about how the team addressed these problems next week in part 2 of “Understanding Avalanches.”

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Gore-Tex, House Wrap, and Stomatal Conductance

Want to develop an appreciation for Gore-Tex?  All you need is five minutes in a rubber raincoat.  But how do you know whether the North Face knock-off you’ve just purchased in China for a ridiculously low price is Gore-Tex or rubber?  If you’re a METER researcher, you dash back to your hotel room and clamp a porometer onto the fabric.

The leaf porometer was designed to measure stomatal conductance in leaves.  It’s typically used by canopy researchers to relate stomatal resistance to canopy attributes like water use, water balance, and uptake rates of herbicides, ozone, and pollutants.  Yet, from the beginning, Dr. Gaylon Campbell, the porometer’s designer, saw the possibilities:  “Give this to someone with only a passing interest in research, a ten-year-old kid for example, and they’ll go around the garden and come back with some really interesting observations,” he said.  “There are lots of questions about what loses water and what doesn’t that you can answer with this instrument.”

Researcher Clamping a LEAF POROMETER onto a Leaf in a Forest

SC1 Leaf Porometer

Dr. Campbell was probably thinking the questions would be about organic material—but it hasn’t always turned out that way.  By putting a wet paper towel on one side of an inorganic material and clamping the towel and the material into the porometer head, you can measure how well water vapor diffuses through the material.  Using this strategy, the researcher in China discovered that his raincoat was pretty much impermeable (unlike real Gore-Tex, which is a good vapor conductor).  Spotting the fake North Face coat is now a favorite part of METER’s canopy seminar.  And the coat is not the only leafless item that has been tested. “People will clamp the porometer on just about anything,” Doug Cobos, a METER research scientist, admitted. He himself grabbed it when a local contractor brought in a sample of some supposedly unique house wrap.

Siding is supposed to protect a house from the elements, but most building codes now require that houses be wrapped under the siding.  House wraps provide a secondary defense against liquid water and increase energy efficiency by preventing drafts.  As with raincoats, high-performance house wrap needs to repel water and stop wind while remaining permeable to water vapor.

A House Under Construction with Trees Around it

House under construction with protective wrap under the siding.

The practice of applying a sheathing of tar paper under siding is a hundred years old, but in the last fifteen years, high tech house wraps made from polypropylene in combination with a push towards energy efficiency have made the house wrap market big and competitive.  Upstart wraps try to gain market share through innovation and the one brought in by the local contractor came along with an outlandish claim.  According to the manufacturer’s rep, this plastic wrap would allow water vapor to diffuse out while preventing any from diffusing in.  Some builders might have scratched their heads and moved on.  Our local man decided to check it out.  He brought a sample of the mystical wrap to Decagon.  Out came the porometer and a quick scientific study of house wrap was born.

Dr. Cobos tested industry standard Tyvek house wrap along with the great one-way pretender.  The results?  “The vapor conductance of the new material was basically the same, regardless of which side of the material faced wet filter paper,” Dr. Cobos said.  “And, in fact, the material didn’t diffuse well at all.  Its conductance was similar to cheap perforated plastic.  It didn’t come close to the performance of Tyvek.” Ultimately, the newfangled wrap was retested by the manufacturer and taken off the market.

Probably the porometer’s best and highest use is still in canopy research, but it still gets pulled out to measure whatever seems interesting, organic and inorganic alike.  That dovetails with Dr. Campbell’s vision of it as a tool for routine use in canopy studies—and everywhere else.  Can you use it on yourself?  “Oh sure,” says Dr. Campbell.  “People clamp the porometer on their fingers all the time.  That’s a quick way to see if it’s working.”  He grins.  “Maybe you could use it as a lie detector on your kids.”

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

The Scientific Instrumentation Museum of Horrors

Chris Chambers is the primary technical support scientist at METER.  Deep within the recesses of his office, there is a collection of scientific instrumentation we like to call the “Museum of Horrors”.  It showcases the many instruments that have been mangled and destroyed over the years by insects, animals, or the environment.

Melted Serial Cable sitting on a stone

This serial cable melted when it got too close to a sample heating oven.

We get a few instruments back every year that are burned up in a fire, chewed up by rodents, and occasionally we get one that’s been exploded by lightning. We interviewed Chris to find out how to prevent scientific instrumentation from being damaged or destroyed by these types of natural disasters.

Soil Moisture Sensor that got Eaten by Ants

Beware of ant hills. This soil moisture sensor got eaten by ants.

Animals and insects:

The single most important thing you can do to prevent damage from animals is to protect your cables. You can protect your cables with cable armor, electrical conduit, or PVC pipe. Even better is to place cables in some type of conduit and then bury it.  Keeping things tidy around the data logger and avoiding exposed cables as much as possible will go a long way toward preventing animals and insects from ruining your experiment.

An ECH2010 Laying in Dirt and Chipped by a Shovel

A retired ECH2O10 that was hit by a shovel.

Lightning:

Lightning is not as big of a danger on METER loggers as it is with third party loggers (read about logger grounding here). Where we typically see people run into problems with lightning is when they have long lengths of cable between the data logger and sensor. Long cable runs act like lightning harvesting antennae.  The best thing to do is to keep the cables shorter and do not spread them out in lots of different directions.

TEROS12 with a Bent Needle from Being Pushed into a Rock

This soil moisture sensor was pushed into a rock.

Wildfire:

We have a few instruments every year that get burned up in fires, but there is not much you can do about this hazard except for watching for reports of encroaching fires that may be in your surrounding area and evacuating important instrumentation.

Data Logger that was Struck by Lightning Laying in Bark

data logger that was struck by lighting.

Flooding:

The worst killer of data loggers is flooding.  We have a lot of customers that try and bury their loggers, and that’s generally a terrible idea.  Unless you can guarantee the logger will be waterproofed and put some desiccant inside the box, it will probably end badly.  There are a few scientists out there that have done a really good job of waterproofing, but they generally spend almost as much effort and money waterproofing as they do purchasing the actual logger.

There’s always going to be some risk to your scientific instrumentation because you’re installing it outside, but hopefully, these tips will help you avoid disaster and keep your system out of the museum of horrors.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our