Skip to content

Posts from the ‘Canopy’ Category

A different approach to stream restoration

University of Idaho graduate student, Adrianne Zuckerman, is taking a different approach to stream restoration than the traditional approach, channel manipulation, which often requires heavy equipment and major disruption to the riparian area.

Zuckerman set out to understand how vegetation lining the stream bank impacts habitat quality for anadromous salmon and steelhead in Washington’s Methow River, which flows through the eastern Cascades. Zuckerman wanted to know how tree species composition affects the amount of nutrients available to the benthic insect community, since they are a critical food source for young salmonid fish.

When Zuckerman began investigating methods for measuring leaf contribution to the stream, she found that leaf litter traps were the standard equipment. Leaf litter traps are time-consuming to set and maintain, and data analysis consists of frequent visits to the field followed by extensive time in the lab processing leaf material.

Stream with rocks and trees

Looking for an alternative method, she discovered the LP-80 ceptometer: a lightweight, field-portable instrument for measuring leaf area index. Using the LP-80, Zuckerman was able to rapidly assess the leaf area contribution of each tree species along the riparian corridor. Using this information, it was relatively straightforward for her to estimate the contribution of each tree species to the stream food web.

Zuckerman’s research will help land managers and other researchers understand the importance of riparian vegetation for maximizing the food available to salmonid fish species. Improvement and maintenance of optimal stream-side vegetation composition should ultimately help to enhance salmon populations in the Pacific Northwest.

How To Estimate the Impact of Radiation Sources in the Environment

What impact does direct solar radiation have on the overall radiation balance? Dr. Colin Campbell, WSU Environmental Biophysics professor and METER scientist, shows you how to do the calculations in our latest chalk talk.

Transcript

Hi, I’m Dr. Colin Campbell. And this is a METER Chalk Talk.

Have you ever been outside on a hot day walking in the full sun and then stepped into the shade? The relief is almost immediate. And I was thinking about that a lot when I was looking at this graph here, the estimated crop water loss on one of my experiments.

So this is an ET zero, meaning a reference ET. But since I was working grass, that was actually the estimated water loss from this grass crop. And what I noticed was that the shape of this curve kind of went up, and then went down. And it kind of matched right here, the solstice, the summer solstice. And in my mind, I thought, you know, what impact is direct solar radiation have on the overall radiation balance? Well, we can quickly just jump down and look at the equation that talks about how we might estimate the evapotranspiration from a crop. I’m not going to be able to have time here to get into what each of these variables mean.

But as you see, solar absorbed radiation, R abs is a strong component of that overall calculation. Now, when we talk about absorbed radiation, we need to understand that it’s not just all direct sunlight. In fact, if you assumed that, you’d be off in the weeds quite a bit, because it contains components of both longwave radiation, which is radiation that’s coming from your terrestrial surroundings, and shortwave radiation, that which is coming from predominantly the sun.

So let’s talk about that for a minute. With absorbed radiation, we have shortwave radiation. This is radiation that’s less than four micrometers. And we have longwave radiation. This is not surprisingly, from wavelengths greater than four micrometers. Now, this shortwave radiation, this comes from the sun longwave radiation comes from other sources, like trees, the sky, ground, just other objects that are around the temperature that we expect in the natural environment. Now, the truth of the matter is to get R abs, we need to combine both of these things into a single number. And it actually gets even more complex than that. So bear with us as we go on to the next equation.

R abs is a function of both shortwave radiation and long wave radiation. And when we calculate our radiation balance to get absorbed radiation, we have to actually take all of this into account. Now, you might be wondering, what are the other pieces in this equation, we’re going to spend a little time going over that. So you might understand how we can get from all of these numbers, all of these potential sources of radiation to a final number of R abs.

This portion of the equation here is shortwave radiation. And we’re going to talk about the variables in that equation. The first one we see is alpha s. It’s a number between zero and one. It signifies the percentage of shortwave radiation that the object can absorb. The other parameters in the equation include some F’s and some S’s. The F’s we call view factors, we’ll discuss view factors in more detail in another chalk talk. But suffice it to say that these essentially are parameters to estimate the amount of radiation that our object can see in its surroundings.

S stands for shortwave radiation. And this comes from several different sources. They include p: this is radiation that’s coming directly from the sun. That’s the one I mentioned earlier, that we feel if we’re standing in the direct sun, versus if we walk into the shade. But there are a couple of others. One is diffuse. This is the radiation that’s scattered as light comes into our atmosphere and it’s scattered by the atmosphere.

Finally, there’s R. This is reflected radiation, radiation that when it comes in, hits a surface, it reflects off that surface and comes and impinges on our object. Think about snow. If you’ve ever been skiing or out on the snow, you know, on a sunny day, you’re getting a lot of radiation that’s being reflected back. This portion of the equation over here is our longwave portion. Similar to our shortwave, it contains many of the same symbols, but they’re a little bit different.

The alpha L is the absorbed radiation. Now in the long wave that also goes from zero to one. The F is our view factor again, but now the view factor of longwave radiation, and L stands for that longwave radiation. This time, the subscripts A, that stands for atmosphere, and G stands for ground. If we put together all components in this equation, we’ll be able to solve for absorbed radiation. But that’s going to take a little bit of work. First, we need to understand the absorptivity of our surface both in the shortwave and the longwave.

The shortwave typically is calculated just from tables from looking out on the internet. For example, if I wanted to look at the absorptivity of a maple leaf, that’s typically around 50%. But it’s something that’s probably been calculated in literature. For our longwave radiation, almost all objects absorb long wave radiation at about 97 to 98% of the possible total.

So it’s pretty easy to estimate these absorptivities for objects that are fairly common. Calculating solar radiation and long wave radiation take a little bit more time. And especially understanding the view factors or how much of a particular surface our object sees, is going to take a whole chalk talk on its own. We’re going to leave this discussion here and leave for next time an opportunity to talk about how to calculate our shortwave radiation, or long wave radiation, and then get to the complicated discussion of view factors.

For more content like this, head over to our YouTube channel, or go to metergroup.com. Thanks for watching METER chalk talks.

See METER environmental sensors → 

Understanding the Language of Plants

Like a silent battle cry, plants call out to signal they are under siege as a warning to other plants and to call in reinforcements to fend off the invasion.

How does this communication work? What else are plants doing to protect themselves from disease and predators alike? In our latest podcast, Natalie Aguirre, a PhD candidate and plant physiology and chemical ecology researcher at Texas A&M University, dives into her research on pathogen infection, water stress, and how plants communicate and defend themselves.

LISTEN NOW→

Notes

Natalie Aguirre graduated with a degree in biology from Pepperdine University, where she completed an honors thesis conducting research on the interaction of drought stress and pathogen infection in chaparral shrubs. She then spent a year as a Fulbright scholar in Spain, studying the effect of water stress on Dutch Elm Disease. Most recently, Natalie worked for the Everglades Foundation, creating educational programs and materials about the Florida Everglades.

Links to learn more about Natalie Aguirre

Publications by Natalie Aguirre

Natalie Aguirre on Loop Open Science Research Network

Subscribe

https://www.metergroup.com/en/meter-environment/podcast

Follow us

https://twitter.com/meter_env

https://www.linkedin.com/showcase/meterenvironment/

Questions?

Our scientists have decades of experience helping researchers and growers measure the soil-plant-atmosphere continuum. 

Disclaimer

The views and opinions expressed in the podcast and on this posting are those of the individual speakers or authors and do not necessarily reflect or represent the views and opinions held by METER.

Water Resource Capture: Turning Water Into Biomass

As world water demand increases and supplies decrease, how can we turn more of the water we use for agriculture into biomass? In this webinar, Dr. Campbell dives deep into the measurement and implications of making the most of every drop of water.

Learn how to measure the amount of water a crop will need.

Crops turn sunlight, water, carbon dioxide, and nutrients into food

The availability of those resources puts limitations on the amount of food a crop can produce. A previous webinar considered the limitations of sunlight. In this 30-minute webinar, world-renown environmental biophysicist, Dr. Gaylon S. Campbell, discusses how to measure the amount of water a crop will need and how to use that value to predict the amount of biomass it will produce.

Achieve maximum biomass from every drop

Join Dr. Campbell as he discusses the measurements and calculations needed to know how much biomass a given environment can produce. Dr. Campbell will discuss:

  • How resource capture models work
  • How biomass production and water use are linked
  • Examples of effective uses of water resource capture models
  • Instrumentation needed to determine water and radiation limitations on yield
  • How to use soil and atmospheric measurements to quantify crop water capture
  • Water budgets and how they are used to get transpiration and biomass production

Register here→

Presenter

Dr. Gaylon S. Campbell

Dr. Campbell has been a research scientist and engineer at METER for 19 years following nearly 30 years on faculty at Washington State University. Dr. Campbell’s first experience with environmental measurement came in the lab of Sterling Taylor at Utah State University making water potential measurements to understand plant water status. Dr. Campbell is one of the world’s foremost authorities on physical measurements in the soil-plant-atmosphere continuum. His book written with Dr. John Norman on Environmental Biophysics provides a critical foundation for anyone interested in understanding the physics of the natural world. Dr. Campbell has written three books, over 100 refereed journal articles and book chapters, and has several patents.

Next steps

Questions?

Our scientists have decades of experience helping researchers and growers measure the soil-plant-atmosphere continuum. 

Are floods and droughts really unpredictable?

In our latest podcast episode, Kevin Hyde, manager of the Montana Mesonet, discusses his views on predicting and mitigating the effects of flood and drought.

Montana’s large geographical area makes mesonet equipment maintenance a challenge.

He also shares how to build a robust weather network with high-quality data on a small budget, why setups should include other measurements such as soil moisture and NDVI, and the genius way he handles maintenance over such a large geographical area.

Listen now—>

Notes

Kevin Hyde is the manager of the Montana Mesonet. Learn more about the Montana Mesonet project on their website. 

Montana Mesonet website

Subscribe:

https://www.metergroup.com/we-measure-the-world/

Follow us:

Questions?

Our scientists have decades of experience helping researchers and growers measure the soil-plant-atmosphere continuum. 

Disclaimer

The views and opinions expressed in the podcast and on this posting are those of the individual speakers or authors and do not necessarily reflect or represent the views and opinions held by METER.

Chalk talk: How to model air temperature variation with height

In his latest chalk talk, Dr. Colin Campbell, environmental scientist at METER Group, teaches how to model vertical variation in temperature and how to estimate sensible heat flux.

Video transcript

Hello, everyone. My name is Dr. Colin Campbell, and I’m a senior research scientist here at METER Group. For today’s chalk talk, we’ll be talking about modeling vertical variation in temperature. In Figure 1, I’ve put together a graph that shows the maximum and minimum temperature with height and depth in the soil at some snapshot in time at a particular place. 

Figure 1. Maximum and minimum temperature with height and depth at a snapshot in time, in a particular place

It’s interesting to note that the change in temperature with depth in the soil is much faster than the change in temperature with height, whether we’re talking about a maximum or minimum. And the reason is that even though air is a good insulator, it also mixes really well. And that mixing is caused by eddies. And there’s a little more to that story. It depends specifically on surface heating by the sun through radiation and the cover type, whether it’s plants, rocks, boulders, straight soil, snow, or wind.

Equation 1

If we were going to model that, we would start by writing an equation (Equation 1) where a temperature at sun height, Z, above the surface (see variables noted in Figure 1), is equal to an aerodynamic surface temperature, T0, minus the sensible heat flux, divided by 0.4 times rho, CP, which is the volume specific heat of the air, times a variable called u*, which is the friction velocity. We multiply all that by the logarithm of z, the height above the surface minus d, which is the zero plane displacement, divided by z h, which is a roughness parameter. You might notice up here in the list of variables, that the zero plane displacement is 0.6 times H. H is the canopy height in meters. The rough roughness parameter can be estimated as 0.02 times the canopy height or times H. Now we have an equation that will help us model temperature with height. 

However, often we don’t know things like H, our sensible heat flux, and u*, our friction velocity. One of the things that we notice about this equation is that it’s set up somewhat like a linear equation. As you know, an example of a linear equation is something like Equation 2.

Equation 2

Figure 1 isn’t written quite that way, but if we look closely at the example below (Equation 3), this value could be our b, and this value our m, and this value could be our x. And if we do that, we actually can get some use out of graphing temperature with height. 

Equation 3

So we went out one day and measured this with a METER Group set of environmental sensors set up at certain heights above the surface. Here we placed sensors at 0.2 m, 0.4 m, 0.8 m, and 1.6 m above the ground. 

Table 1

To visualize this, in Figure 2 we graphed height on the y axis and temperature on the x axis, similar to the graph in Figure 1.

Figure 2. Graph showing the relationship between height and temperature

We know from Equation 1 that the axes for temperature and height should be switched because temperature is the dependent variable, and height is the independent variable. So if we switch axes it would look like the graph in Figure 3.

Figure 3. Graph showing the relationship between height and temperature where temperature is the dependent variable and height is the independent variable.

Figure 3 is graphed with the independent variable on the x axis and height on the y axis. If we fit this curve with today’s calculators, it would be fairly easy to get a curve that would fit that. But since it’s a linear equation, we can take the temperature data from Table 1 and the In ((Z-d)/ZH) data from Table 1 and graph them together.

Figure 4. Relationship between temperature and In Z-d/zh

Figure 4 is a graph that shows what happens when we do that. Notice that, just like we suggested, it creates a linear equation (Equation 4). 

Equation 4

We learned in Figure 1 the B value was equal to t0 (our aerodynamic surface temperature). Since we know our surface temperature is 34.5 degrees, we can estimate what the temperature is down here at the surface, even though we only measured down 0.2 m. 

We also know from Equation 4 that our M value is equal to -2.01. And if we look at Equation 1, our slope value is below.

Equation 5 (the slope value from Equation 1)

So we can write

Equation 6

How to estimate sensible heat flux

Now, if we were interested in the sensible heat flux, which we often are, we can simply rearrange this equation to be

Equation 7

And in Figure 1, I forgot to give you this value, but for an air temperature of 20 degrees celsius, 

Equation 8

And then finally, a typical unit for friction velocity, which should be measured in the field over the specific canopy you are in, is about 0.2 meters per second.

Equation 9

So if we did this calculation, we would learned that there’s about 193 watts per meter squared of sensible heat flux coming off that surface. 

Equation 10

So if we can measure temperature at a few heights, we can estimate what the heat flux is coming off the surface assuming we know something about our canopy. Learn more about measuring and modeling environmental parameters at metergroup.com/environment. If you have any questions feel free to email Dr. Campbell at [email protected].

Learn more

Read about weather station best practices—>

Discover the ATMOS 41 All-In-One Weather Station—>

Download the Researcher’s complete guide to soil moisture—>

Episode 9: Pioneers of Environmental Measurement

What was the life of a scientist like before modern measurement techniques? In our latest podcast, Campbell Scientific’s Ed Swiatek and METER’s Dr. Gaylon Campbell discuss their association with three pioneers of environmental measurement.

Learn what it was like to practice science on the cutting edge. Discover the creative lengths they went to and what crazy things they cobbled together to get the measurements they needed.

Listen now—>

Smart orchard aims to install thousands of sensors for actionable insights

When big data is a problem

Orchard growers today live in an exciting time where environmental data are becoming inexpensive and abundant. But going from a data-poor to a data-rich environment has its challenges. Big data can be so overwhelming that growers struggle with how to turn that data into actionable insight.

In March, Innov8.ag began piloting a smart orchard project in collaboration with researchers from Washington State University & Oregon State University at Chiawana Orchards in Washington state.

One grower on the Washington Tree Fruit Research Commission recently commented that he uses no less than 19 data apps for making decisions. Steve Mantle, founder of innov8.ag, says, “It’s just overwhelming to a grower to consolidate all of this data together. We need to figure out how to help them with actual insights that impact either their yield quality / quantity—and just as importantly—their costs: particularly on labor, chemical/nutrients, and irrigation.”  That’s why in 2020, Mantle and his team approached the Tree Fruit Research Commission’s technology committee to see if they could bring their capabilities, ingesting data from many different data silos and sensor providers into one place, with the goal of providing actionable insights for growers in the apple orchard space. Thus, the idea of a “smart orchard” was born.

Turning big data into a solution

In March, Innov8.ag began piloting a smart orchard project in collaboration with researchers from Washington State University & Oregon State University at Chiawana Orchards in Washington state. Their goal was to “sensorize” an orchard from multiple hardware providers, bringing together growers, data, and researchers to create a sustainable, “smart” orchard with insights that impacted a grower’s bottom line. To do this they combined data from on-farm and off-farm, online and offline sources including satellites, drones, weather providers, telemetry from IoT devices such as soil moisture probes and leaf wetness sensors, and more.” Mantle adds, “We’re trying to see how the sensors at different price points and from different vendors compare against each other in terms of accuracy. But the biggest goal is to get more granularity around and prove the value in canopy, soil, and weather measurements. Then we tie that in with yield, quality, and profit.”

Installing sensors so that comparisons are valid

The smart orchard consists of 100 rows of Gala apple trees spaced out over two 20-acre blocks. A number of different sensor/instrumentation providers, including METER Group, have their sensors deployed at this smart orchard measuring parameters such as weather, irrigation, soil water and nutrients, chemicals, disease, pests, crop health, labor, and drone/satellite imagery. All these data are aggregated and organized on a regular basis to try and enable growers to better understand weather and climate change to make precise, informed decisions and better manage their water usage, labor, equipment, and chemical usage.

Smart Orchard team member and researcher, Harmony Liu, says one challenge they face is making sure the comparisons are valid. “We are careful to install the same sensor types at the same heights so we are making “apple-to-apple” comparisons.”

Liu says in addition to sensing, they collect soil samples every week throughout the season and send them out to two different labs for nutrient testing so they can look at how that data compares with the soil nutrient sensors. They sample at five different locations at three different depths to match the sensors. She adds, “We have the dendrometer, soil nutrient data, soil moisture data, and canopy data all being collected within the same zone. It’s part of our intent to show this data all connecting with each other.” The team also measures irrigation line pressure with a sensor as opposed to using an irrigation switch. Liu says, “We want to know what the pressure signature is as everything turns on and activates so we can understand what that signature looks like and start to identify when there are abnormalities in how the irrigation system fills.” Additionally, they’re using METER NDVI and PRI sensors as well as a pyranometer for ground truthing the drone imagery that they’re doing at a 7 centimeters per pixel resolution.

The goal is understanding in-canopy weather and how to work with institutions on adapting models for disease, pests, and ultimately informing spray management.

Data cleanup is time-consuming

Liu says getting the smart orchard up and running was not without its challenges. “The first challenge was gaining access to some of the data from grower owned instruments because those instruments are not all grouped together.” Liu says that challenge made data cleanup time consuming, but they worked their way through it. She adds, “Overall, having this density of data is difficult because it’s a lot to wade through. But at the same time, it’s been really helpful. Data has been reliable coming in across the board.”

In-farm vs. outside-farm measurements

Liu says one thing they are interested in is accurately measuring temperature and humidity within the orchard because these parameters are critical for apple disease modeling. She says, “When people are modeling disease, they take the inputs from weather forecasts into the disease model for risk calculations. But there are some differences in environmental conditions inside vs. outside the orchard where evapotranspiration will cause temperatures in the canopy to be cooler compared to outside-farm temperatures while the vapor pressure is higher. So that’s one thing we use METER group instruments for. We have outside-orchard,  above-orchard, and in-canopy ATMOS 41 weather stations and ATMOS 14 temperature and relative humidity sensors. We use these to compare the temperature and relative humidity difference. By using an instrument from the same provider, we eliminate the systematic bias vs. if we were to compare temp and RH from different providers. We also set up a vertical profile by installing sensors on the same pole at different heights and could see how the temperature and humidity changed across height for that location.”

Register for the smart orchard project live webinar with innov8.ag this Thursday, Jan.14th at 4pm PST.

Future smart orchard goals

Mantle says their most important goal is understanding in-canopy weather and how they can work with WSU and other institutions on adapting models for disease, pests, and ultimately informing spray management. Liu adds, “We also want to understand data comparison and unification. We want to bring together soil moisture measurements like volumetric water content and data from the METER TEROS 21 matric potential sensor. What we found is that, although they’re looking at soil moisture from different perspectives, unifying the two measurements will be critical for people working on irrigation scheduling.” The team also plans on working with WSU professors to create an evapotranspiration map that blends together some of the sensor telemetry and the view from a drone.

See the webinar

Want to learn more? METER soil physicist, Dr. Colin Campbell and Washington State University soil scientist Dr. Dave Brown discuss the smart orchard project in a METER Group webinar.

View more METER crops webinars—>

Learn more

Download the “Complete guide to irrigation management”—>

How to Use Plant-Water Relations and Atmospheric Demand for Simplified Water Management

Going by soil moisture data alone?

Soil moisture data are useful, but they can’t tell you everything. Other strategies for growers and researchers, like plant and weather monitoring, can inform water management decisions.

Researcher using the SC-1 leaf porometer to measure stomatal conductance
Researcher using the SC-1 leaf porometer to measure stomatal conductance

In this webinar, world-renowned soil physicist, Dr. Gaylon Campbell shares his newest insights and explores options for water management beyond soil moisture. Learn the why and how of scheduling irrigation using plant or atmospheric measurements. Understand canopy temperature and its role in detecting water stress in crops. Plus, discover when plant water information is necessary and which measurement(s) to use. Find out:

  • Why the Penman-Monteith equation, with the FAO 56 procedures, gives a solid, physics-based method for determining potential evapotranspiration of a crop
  • How the ATMOS 41 microenvironment monitor combined with the ZL6 logger and ZENTRA Cloud give easy access to crop ET data
  • How assimilate partitioning can be controlled by manipulating plant water potential using appropriate irrigation strategies
  • Why combining monitoring soil water potential with deficit irrigation based on ET estimates provide an efficient and precise method for controlled water stress management
  • And more…

REGISTER NOW—>

Presenter

Dr. Gaylon S. Campbell has been a research scientist and engineer at METER for over 20 years, following nearly 30 years on faculty at Washington State University. Dr. Campbell’s first experience with environmental measurement came in the lab of Sterling Taylor at Utah State University making water potential measurements to understand plant water status.

Dr. Campbell is one of the world’s foremost authorities on physical measurements in the soil-plant-atmosphere continuum. His book written with Dr. John Norman on Environmental Biophysics provides a critical foundation for anyone interested in understanding the physics of the natural world. Dr. Campbell has written three books, over 100 refereed journal articles and book chapters, and has several patents.

Learn more

Download the “Complete guide to irrigation management”—>

Chalk talk: How to measure leaf transpiration

In his latest chalk talk video, Dr. Colin Campbell discusses why you can’t measure leaf transpiration with only a leaf porometer.

Image of the SC-1 Leaf Porometer which measures stomatal conductance
The SC-1 Leaf Porometer measures stomatal conducance

He teaches the correct way to estimate the transpiration from a single leaf and how a leaf porometer can be used to obtain one of the needed variables.

Watch the video

 

Video transcript

Hello, my name is Colin Campbell. I’m a senior research scientist here at METER Group. And today we’ll talk about how to estimate the transpiration from a single leaf. Occasionally we get this question: Can I estimate the transpiration from a leaf by measuring its stomatal conductance? Unfortunately, you can’t. And I want to show you why that’s true and what you’ll need to do to estimate the total conductance, and therefore, the evaporation of a leaf.

Image of a researcher Measuring stomatal conductance With an SC-1 Leaf Porometer
Researcher Measuring Stomatal
Conductance With an sc-1 Leaf Porometer

The calculation of transpiration (E) from a leaf is given by Equation 1 

Image of the equation used for the calculation of transpiration from a leaf
Equation 1

where gv is the total conductance of vapor from inside the leaf into the air, Cvs is the concentration of vapor inside the leaf and Cva is the concentration of vapor in the air.

Read more—>

Learn more about canopy measurements

Download the researcher’s complete guide to leaf area index—>

Questions?

Our scientists have decades of experience helping researchers measure the soil-plant-atmosphere continuum. Contact us for answers to questions about your unique application.