# Posts from the ‘Greenhouse’ Category

## Chalk talk: How to calculate vapor pressure from wet bulb temperature

In this chalk talk, METER Group research scientist, Dr. Colin Campbell, extends his discussion on humidity by discussing how to calculate vapor pressure from wet bulb temperature. Today’s researchers usually measure vapor pressure or relative humidity from a capacitance-based relative humidity sensor.

However, scientists still talk in terms of wet bulb and dew point temperature. Thus, it’s important to understand how to calculate vapor pressure from those variables.

Watch it now

## Video transcript

Hello, my name is Dr. Colin Campbell. I’m a research scientist here at METER group, and also an adjunct professor at Washington State University where I teach a class on environmental biophysics. And today we’re going to be extending our discussion on humidity by talking about how using a couple of common terms related to humidity, we can calculate vapor pressure. The first term we’re going to talk about is dew point temperature. I’ve drawn a couple of figures below that illustrate a test I performed when I was a graduate student in a class related to biophysics.

The professor had us take a beaker of water and a thermometer and put ice in the beaker and start to stir it. The thermometers were rotating around in the glass, and our job was to look carefully and find out when a thin film of dew began to form around on the glass. So we watched the temperature go down, and at some point, we observed a thin film form onto that glass. At the point the film began to form, we looked at the temperature to get the dew point temperature, which means exactly what it says: the point at which dew begins to form.

This experiment wasn’t perfect because there is certainly a temperature difference between the inside of our glass where we’re stirring with the thermometer and the outer surface of the glass. But it was a good approximation and a great way to demonstrate what dew point temperature is. So we can say that the dew point temperature is the point at which the air is saturated and water begins to condense out. We call this Td or dew point temperature. The beautiful thing about dew point temperature is that if you know this value, you can easily calculate vapor pressure and even go on to calculate relative humidity, as I talked about in another lecture

To calculate vapor pressure from our dew point temperature, we’ll call vapor pressure of the air, ea which is equal to the saturation vapor pressure (es) at the dew point temperature (Td) (Equation 1).

And as I discussed in my other lecture, the saturation vapor pressure is a function of the temperature (not multiplied by the temperature). It’s pretty simple to get the saturation vapor pressure at the dew point temperature. We simply use Tetons formula (Equation 2 discussed here), which says that the saturation vapor pressure at the dew point is equal to 0.611 kilopascals times the exponential of b Td over C plus Td (Td being the dewpoint temperature).

So let’s assume our dew point temperature is five degrees C. This is something you can find in many weather reports. If you look down the list of measurements carefully, it’s usually there. So the vapor pressure of the air (ea) is calculated by the formula I showed (Equation 1). Our first constant b is 17.502 and our second constant C, is just 240.97 degrees C. If we plug all the values into that equation, it ends up that our vapor pressure is 0.87 kilopascals.

Now there might be a variety of reasons we want this value. We might want to use it to calculate the relative humidity. If so, we’d simply divide that by the saturation vapor pressure at the air temperature. Then we’d have our relative humidity. More commonly we use the ea and the saturation vapor pressure at the air temperature to calculate the vapor deficit. So possibly in some agronomic application that might be interesting to us. So that is dew point temperature.

Now we’ll talk about another common measurement, our wet bulb temperature. This was much more common in past years where there weren’t electronic means to measure things like dew point or humidity sensors. And we used to have to make a measurement of humidity by hand. And what they did was to collect a dry bulb temperature or a standard air temperature. And that dry bulb temperature (or the temperature of the air) was compared to what we call a wet bulb temperature.

Researchers made this wet bulb temperature by putting a cotton wick around the bulb of the thermometer. This was just a fabric with water dripped onto it. Once that wick is saturated with water, the water begins to evaporate, and they would use wind to enhance that evaporation. For example, some instruments had a small fan inside that would blow water across this wick, or more commonly, two temperature sensors were attached on a rotating handle, so they could spin them in the air at about one meter per second (or two miles an hour). I don’t know how you’d ever estimate that speed, but that was the goal. This would help the water evaporate at an optimum level.

You can imagine what happens during this evaporation by thinking about climbing out of the pool. You feel some cooling on your skin as water begins to evaporate when you climb out of a pool on a dry, warm summer day. That’s water as it changes from liquid into water vapor, and it actually takes energy for this to happen (44 kilojoules per mole). That’s actually quite a bit of energy used for changing liquid water into water vapor. When that happens, it decreases the temperature of this bulb. If we wait till we’ve reached that maximum temperature decrease, we can take that as our wet bulb temperature, or Tw.

This wet bulb temperature is not quite as simple as our dew point temperature to use in a calculation. Here’s the calculation we need to estimate vapor pressure from the wet bulb temperature.

We take the saturation vapor pressure (es) at the wet bulb temperature (Tw) and subtract, the gamma (Ɣ), which is the psychrometer constant 6.66 times 10-4-1 times the pressure of the air (Pa), multiplied by the difference between the air temperature (Ta) or that dry bulb that I mentioned earlier, and the wet bulb temperature (Tw).

Gamma is an interesting number. It’s actually the specific heat of air divided by the latent heat of vaporization, or that 44 kilojoules per mole that I mentioned before. We can simply take it as a constant for our purposes here as 6.66 times 10-4-1. So let’s actually put it into a calculation.
Our example problem says find the vapor pressure of the air. If air temperature (Ta) is 20 degrees Celsius, the wet bulb temperature (Tw) is 11 degrees Celsius, and air pressure (Pa) is 100 kilopascals (basically at sea level). And just to remind us, this is the constant gamma (6.66 times 10-4-1). Air pressure is 100 kilopascals. We take this standard equation (Equation 4) and insert all these numbers.

So our vapor pressure is going to be this calculation from Tetons formula (Equation 2) and if you plug all those numbers into your calculator (notice our degrees C will cancel) we’re left with kilopascals. So our vapor pressure is about 0.71 kilopascals. So that is how we calculate the vapor pressure from the wet bulb temperature.

I hope this has been interesting. These are values that you may hear about. It’s less common today since we usually get our relative humidity from a capacitance-based relative humidity sensor, but still scientists talk in terms of wet bulb and dew point temperature. So it’s important to understand how we actually calculate our vapor pressure from those variables. If you’d like to know more about this, please visit our website, metergroup.com, and look at some of the instruments that are there to make measurements. Or you can email me if you want to know more at [email protected]. I hope you have a great day.

## Soil Moisture—6 Common Oversights That Might Be Killing Your Accuracy

If you rely on soil moisture data to make decisions, understand treatment effects, or make predictions, then you need that data to be accurate and reliable. But even one small oversight, such as poor installation, can compromise accuracy by up to +/-10%. How can you ensure your data represent what’s really happening at your site?

## Best practices you need to know

Over the past 10 years, METER soil moisture expert Chris Chambers has pretty much seen it all. In this 30-minute webinar, he’ll discuss 6 common ways people unknowingly compromise their data and important best practices for higher-quality data that won’t cause you future headaches. Learn:

• Are you choosing the right type of sensor or measurement for your particular needs?
• Are you sampling in the right place?
• Why you must understand your soil type
• How to choose the right number of sensors to deal with variability
• At what depths you should install sensors
• Common installation mistakes and best practices
• Soil-specific calibration considerations
• How cable management can make or break a study
• Factors impacting soil moisture you should always record as metadata
• Choosing the right data management platform for your unique application

## Chalk talk: How to measure leaf transpiration

In his latest chalk talk video, Dr. Colin Campbell discusses why you can’t measure leaf transpiration with only a leaf porometer.

He teaches the correct way to estimate the transpiration from a single leaf and how a leaf porometer can be used to obtain one of the needed variables.

## Video transcript

Hello, my name is Colin Campbell. I’m a senior research scientist here at METER Group. And today we’ll talk about how to estimate the transpiration from a single leaf. Occasionally we get this question: Can I estimate the transpiration from a leaf by measuring its stomatal conductance? Unfortunately, you can’t. And I want to show you why that’s true and what you’ll need to do to estimate the total conductance, and therefore, the evaporation of a leaf.

The calculation of transpiration (E) from a leaf is given by Equation 1

where gv is the total conductance of vapor from inside the leaf into the air, Cvs is the concentration of vapor inside the leaf and Cva is the concentration of vapor in the air.

## Surprises that leave you stumped

Soil moisture data analysis is often straightforward, but it can leave you scratching your head with more questions than answers. There’s no substitute for a little experience when looking at surprising soil moisture behavior.

## Understand what’s happening at your site

METER soil scientist, Dr. Colin Campbell has spent nearly 20 years looking at problematic and surprising soil moisture data. In this 30-minute webinar, he discusses what to expect in different soil, environmental, and site situations and how to interpret that data effectively. Learn about:

• Telltale sensor behavior in different soil types (coarse vs. fine, clay vs. sand)
• Possible causes of smaller than expected changes in water content
• Factors that may cause unexpected jumps and drops in the data
• What happens to dielectric sensors when soil freezes and other odd phenomena
• Surprising situations and how to interpret them
• Undiagnosed problems that affect plant-available water or water movement
• Why sensors in the same field or same profile don’t agree
• Problems you might see in surface installations

## Best of 2019: Environmental Biophysics

In case you missed them, here are our most popular educational webinars of 2019. Watch any or all of them at your convenience.

## Lab vs. In Situ Water Characteristic Curves

Researcher Running A Hand Across Wheat

Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Watch it here—>

## Hydrology 101: The Science Behind the SATURO Infiltrometer

A Forest With Fallen Trees

Dr. Gaylon S. Campbell teaches the basics of hydraulic conductivity and the science behind the SATURO automated dual head infiltrometer.

Watch it here—>

## Publish More. Work Less. Introducing ZENTRA Cloud

Researcher is Collecting Data from the ZL6 Data Logger

METER research scientist Dr. Colin Campbell discusses how ZENTRA Cloud data management software simplifies the research process and why researchers can’t afford to live without it.

Watch it here—>

## Soil Moisture 101: Need-to-Know Basics

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it.

Watch it here—>

## Soil Moisture 201: Moisture Release Curves—Revealed

Rolling Hills of Farm Land

A soil moisture release curve is a powerful tool used to predict plant water uptake, deep drainage, runoff, and more.

Watch it here—>

## Soil Moisture 301: Hydraulic Conductivity—Why You Need It. How to Measure it.

Researcher measuring with the HYPROP balance

If you want to predict how water will move within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Watch it here—>

## Soil Moisture 102: Water Content Methods—Demystified

Modern Sensing is more than just a Sensor

Dr. Colin Campbell compares measurement theory, the pros and cons of each method, and why modern sensing is about more than just the sensor.

Watch it here—>

## Soil Moisture 202: Choosing the Right Water Potential Sensor

Electrical Conductivity

METER research scientist Leo Rivera discusses how to choose the right field water potential sensor for your application.

Watch it here—>

## Water Management: Plant-Water Relations and Atmospheric Demand

Dr. Gaylon Campbell shares his newest insights and explores options for water management beyond soil moisture. Learn the why and how of scheduling irrigation using plant or atmospheric measurements. Understand canopy temperature and its role in detecting water stress in crops. Plus, discover when plant water information is necessary and which measurement(s) to use.

Watch it here—>

## How to Improve Irrigation Scheduling Using Soil Moisture

Capacitance

Dr. Gaylon Campbell covers the different methods irrigators can use to schedule irrigation and the pros and cons of each.

Watch it here—>

## Soil Moisture 302: Hydraulic Conductivity—Which Instrument is Right for You?

Leo Rivera, research scientist at METER teaches which situations require saturated or unsaturated hydraulic conductivity and the pros and cons of common methods.

Watch it here—>

## Predictable Yields using Remote and Field Monitoring

New data sources offer tools for growers to optimize production in the field. But the task of implementing them is often difficult. Learn how data from soil and space can work together to make the job of irrigation scheduling easier.

Watch it here—>

## Chalk talk: How to calculate absolute humidity

In this video, Dr. Colin Campbell discusses how to use air temperature and relative humidity to calculate absolute humidity, a value you can use to compare different sites, calculate fluxes, or calculate how much water is actually in the air.

Vapor density tells you how much water is actually in the air.

Watch the video to find out how to calculate absolute humidity and how to avoid a common error in the calculation.

## Video transcript: Absolute humidity

Hello, I’m Dr. Colin Campbell, a senior research scientist here at METER Group, and also an adjunct faculty at Washington State University where I teach a class in environmental physics. Today we’re going to talk about absolute humidity. In a previous lecture, we discussed how relative humidity was a challenging variable to use in environmental studies. So, I’m going to show the right variable to use as we talk about humidity.

Absolute humidity can be talked about in terms of vapor pressure, which is what I’m used to, or in terms of vapor density. Whatever we use, we usually start by calculating this from a relative humidity value and a knowledge of air temperature. In my relative humidity lecture, I said that Hr (or the relative humidity) was equal to the vapor pressure divided by the saturation vapor pressure. And in most field studies, we’d typically get a report of the air temperature and the relative humidity. So how do we take those two values and turn them into something we could use to compare different sites, calculate fluxes, or calculate how much water is actually in the air? We’ll need to work through some equations to get there. I’m going to take you through it and give you an example so that you know how to do that calculation.

## Vapor pressure

First, we’ll talk about absolute humidity in terms of vapor pressure or Ea. If we rearrange this equation here (very simple math), the relative humidity times the saturation vapor pressure will give us our vapor pressure. And that vapor pressure is now an absolute humidity. How would we do this? Well, let’s first talk about an example in terms of vapor pressure.

Let’s say a weather report said the air temperature was 25 degrees Celsius and the relative humidity was 28% or 0.28. First, we’d use Teten’s formula which I talked about in the previous lecture. We’d say the saturation vapor pressure at the air temperature is equal 0.611 kPa times the exponential of a constant times the air temperature divided by another constant plus the air temperature. So in our case, the air temperature is 25 degrees, which we’ll add here. Remember saturation vapor pressure is a function of 25. So 0.611 kPa times the exponential of 17.502. In the previous lecture, I showed you that b value times 25 degrees divided by the c value 240.97. And then we add to that 25 degrees (this is for liquid water, of course, it’s 25 degrees Celsius because nothing’s frozen). If you were working over ice, these constants would be different. So we put this into our calculator or into a spreadsheet, and we easily calculate the saturation vapor pressure at 25 degrees C is 3.17 kPa. But we’re not done yet.

We have to go back to this equation that says the vapor pressure is equal to the relative humidity times the saturation vapor pressure. When we plug our data in, the relative humidity 0.28 times the saturation vapor pressure that we calculated right here, we get a vapor pressure of 0.89 kPa. And if we were calculating fluxes (we’ll talk about that in another lecture), this is typically the value we would use. But there are other things we can do with the absolute humidity values that might be useful.

## Vapor density

So let’s talk about vapor density. If we had a certain volume of air, and we wanted to know how much water was in that volume of air (for example, if we were going to try to condense it out) we’d more typically use this vapor density value. But how do we get from a vapor pressure that we can easily calculate from a weather report to a vapor density that would allow me to know how much water was actually in the air?

This is our equation that says the vapor pressure times the molecular weight of water divided by the universal gas constant times the kelvin temperature of the air will give us the vapor density. So I’ll take you through an example here, just continue on the one we’ve already done, just so you can see how to calculate it and to avoid a pretty common misstep.

## How to avoid a common error

Again, molecular weight of water is 18.02 g/mol. The universal gas constant R is 8.31 J/mol K. And here’s the kelvin temperature of the air. I’ve scribbled this in a little bit. That’s how I note the difference between something like this, which would be air temperature in Celsius and this air temperature in kelvin. So let’s go ahead and plug all these into our equation. There’s our vapor pressure. We’re just dragging that over here. There’s our molecular weight of water. There’s our universal gas constant. And here is the kelvin temperature of the air. So as we look at this, you immediately say, how do I cancel these units? The kilopascals and the joules are certainly not going to cancel as they are. But there are conversions we can use. A Pascal is equal to an Nm-2, and a joule is equal to an Nm.

So if we change this joule to an Nm, we change this Pascal to Nm-2, we have to pay attention here as we’re doing it that the kilo right there, don’t forget that because that can mess you up. So I’m circling that to make sure that we’ve got this. Now we cancel our N’s, and combining together we get a m-3. That’s what we’re hoping for on the bottom. The grams come out on top, they don’t cancel, but everything else does. The mols cancel mols, the kelvin cancels the kelvin there, and the N cancels the N.

And we come out with just what we were looking for, save one thing, which is a kg/m-3. And this calculation gives us point 0065. But since we actually want to do this in grams, because that’s more typical of what you find in how much water there is in air. It’s not a kg of water, but more in terms of g/m-3 of water, we get 6.5 g/m-3

One way you can check this calculation (just as a rule of thumb), is if we had a pressure of the air of 100 kPa and a temperature of 20 degrees Celsius, the multiplier to get from your vapor pressure to your vapor density is about 7.4 or so. We’ll just say around 7.0. And we’ll do a quick mental calculation, 0.89 times 7, that should give us something around 6.0. So our answer should be around 6.0, and it is. It’s certainly no orders of magnitude off. So we’ve got at least close to the right answer, by doing a mental check, and we can say this conversion works.

## Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

## Chalk Talk: Why is Humidity Relative?

Dr. Colin Campbell, a senior research scientist at METER Group, as well as adjunct faculty at Washington State University teaches about relative humidity.

Watch the video to find out why we use the term relative humidity and why comparing RH at different research sites can be a challenge.

## Why is humidity relative?

Hi, I’m Dr. Colin Campbell. I’m a senior research scientist here at METER Group, as well as adjunct faculty up at Washington State University. And I teach a class in environmental biophysics. And today, we’re going to be talking about relative humidity. Have you ever looked at a weather report and wondered, what do they mean by the term relative? Why aren’t we talking about absolute things? And so today I’m going to talk about what is relative humidity? Well, relative humidity we’re going to define here as just hr. And hr is equal to the partial pressure of water vapor in air divided by the saturation vapor pressure or the maximum possible partial pressure of water in air as a function of temperature. So this is relative because anytime we have a partial pressure of water vapor, we’re always dividing it by the maximum possible water vapor that could be in the air at any point.

## Comparing RH at different sites is a challenge

So, why would relative humidity be such a challenge for us as scientists to use in comparing different sites? I wanted to talk about that so we can focus in here on this saturation vapor pressure. Over here we have Tetens equation. This says that the saturation vapor pressure, which is a function of air temperature is equal to 0.611 kPa times the exponential of a constant “b” times the air temperature divided by another constant “c” plus the air temperature. So at any point, depending on the air temperature, we can calculate the saturation vapor pressure, and then we can put it back into this equation and get our relative humidity. There are two situations we might think about for calculating our saturation vapor pressure. The most typical is this one: where that constant “b” is 17.502 degrees C. And the constant “c” is 240.97 degrees C (the units on this are degrees C, so these will cancel). If we’re over ice, those constants will be different: “b” would be 21.87 degrees C and “c” would be 265.5 degrees C.

So as I mentioned, relative humidity is a challenging variable to use in research because while vapor pressure (ea) (the vapor pressure of the air) is somewhat conservative across a day, the saturation vapor pressure (with respect to air temperature), this changes slowly with temperature across the day. So if we graphed temperature on one axis and the relative humidity on the other axis, we might during a typical day have a temperature range that looks somewhat like this. And even if the actual vapor pressure “ea” wasn’t changing, we’d see a relative humidity trend that looked like this: only changing because of air temperature. And because of that, if we wondered how do I compare the water in the air at one research site, for example, with the water in the air at another research site? We might be inclined to average them. But because of this trend, the average of the relative humidity at any site tends to be around 0.60 to 0.65 and therefore will be totally irrelevant in the literature.

So we need to speak in absolutes, and in my next lecture, I’m going to go into what we can do to calculate that absolute relative humidity. If you want to know more about making measurements in the atmosphere, go to metergroup.com, look at our atmospheric instrumentation, and you can learn more from there.

## Data deep dive: why am I seeing diurnal changes in soil moisture?

In the video below, METER soil scientist Dr. Colin Campbell discusses an often-misdiagnosed water content signal that looks like typical diurnal temperature cycling but is actually due to a phenomenon called hydraulic redistribution. He shows how easily these patterns can be seen in ZENTRA Cloud data management software.

## Watch the video

To understand how soil moisture and soil water potential work together, download “The researcher’s complete guide to water potential.”

## Video transcript

Hello, my name is Colin Campbell. I’m a research scientist here at METER Group. And today we’re going to be digging into some water content data that I collected over the last summer. This is a field that’s planted in spring wheat, it’s about 700 meters across. And we’ve set up six measurement sites. At each one of these sites, we’re making several measurements, but the ones we’re going to talk about today are just water content. And while we’ve installed water content sensors at 15, 45, and 65 centimeters, we’re just going to focus on the 65-centimeter water content sensors. These sensors are the METER TEROS 12 soil moisture sensors, so they also measure electrical conductivity and temperature, and we’re going to look at temperature as well because that figures into this discussion.

So this field was planted in April of 2019. And not a lot interesting goes on at the 65-centimeter depth through April, May, and June. But as we get into July, the wheat is reaching maturity, and they essentially are going to cut off the irrigation water here on July 22. So up to July 22, there’s really not a lot of movement in the water content. One of the sites decreases a little bit, but each line is flat. What I noticed as I was looking at this particular graph is after this long period of very flat data, after June 22 when the irrigation was cut off, we start to see some movement in the water content at this depth Not only is there movement down, but there’s a daily movement of the actual water content signals, all but this top light green line. And it made me wonder, what’s going on?

Diurnal water content fluctuations are not always due to temperature.

Initially, whenever you see a diurnal movement, you suspect that it’s caused by temperature. It’s been said that every sensor is probably a temperature sensor first, and a sensor of whatever we’re really interested in second. In this case, we can look to see what the temperature is doing at that depth. Here’s soil temperature, at 65 centimeters, and even though there’s just a little bobble in the line, the line is almost completely flat. We see the seasonal trends in temperature, but really no diurnal temperature cycling. And this scale is also fairly small. So back to our 65-centimeter water content. If it’s not temperature that’s affecting these lines, then what is it?

I’ve seen this before in an experiment that I did years ago in a non-irrigated wheat field. We were measuring down at  150 centimeters, and when the water had been used up in the upper levels of the soil profile, the roots of the wheat plant just simply went down to 150 centimeters and started taking water up. So this is what I assume is also happening here. The wheat has extended its roots down to 65 centimeters, since its irrigated wheat. That’s not too deep, but wheat doesn’t necessarily need to get its roots down super deep. And as the wheat accesses that water, we’re seeing these daily drops in water. But then we’re seeing just a slight increase in water. Here on July 28, we’re seeing that water go up slightly. And so why is this happening? We might understand how the water is being taken out of the soil, but why do we see a slight increase in the water content (just a few tenths of a percent)?

What I think is happening, in this case, is that it’s not temperature, but actually, roots are growing down into this area, and they’re probably growing around the sensor. As we change from day to night, we see a release in the elasticity of the water in the xylem, and maybe just a little bit more water down in the roots as they’re the transpiration pull of the day is lessened and stops overnight. The stomates are closed, and we see just a little bit of water coming back into the roots and possibly into the soil.

Now there was a big discussion many years ago about whether this was something called hydraulic lift where trees could take up water from deep in the soil profile and essentially give it back to plants near the surface. And although it was a great debate, it was never proven that this actually happened: water being spread from deeper locations to more shallow locations by roots. But this is probably hydraulic redistribution where we just have roots filling with water, and when they are filled, we see a little bit in the water content sensor.

## Soil moisture: ECH20 vs. TEROS, which is better?

See how the new TEROS soil moisture sensor line compares with METER’s trusted ECH20 sensor line.

## Volumetric water content—defined

To evaluate the performance of any water content sensor, you need to first understand its technology. In order to do this, it’s necessary to understand how volumetric water content (VWC) is measured. Volumetric water content is the volume of water divided by the volume of soil (Equation 1) which gives the percentage of water in a soil sample.

So, for instance, if a volume of soil (Figure 1) was made up the following constituents: 50% soil minerals, 35% water, and 15% air, that soil would have a 35% volumetric water content.

The percentage of water by mass (wm) can be measured directly using the gravimetric method, which involves subtracting the oven-dry soil mass (md) from the mass of moist soil (giving the mass of water, mw) and dividing by md (Equation 2).

The resulting gravimetric water content can be converted to volumetric by multiplying by the dry bulk density of the soil (b) (Equation 3).

## Why capacitance technology works

Volumetric water content can also be measured indirectly: meaning a parameter related to VWC is measured, and a calibration is used to convert that amount to VWC. All METER soil moisture sensors use an indirect method called capacitance technology. In simple terms, capacitance technology uses two metal electrodes (probes or needles) to measure the charge-storing capacity (or apparent dielectric permittivity) of whatever is between them.

Table 1 illustrates that every common soil constituent has a different charge-storing capacity. In a soil, the volume of most of these constituents will stay constant over time, but the volume of air and water will fluctuate.

Since air stores almost no charge and water stores a large charge, it is possible to measure the change in the charge-storing ability of a soil and relate it to the amount of water (or VWC) in that soil. (For a more detailed explanation of capacitance technology watch our Soil Moisture: methods/applications webinar.

## Capacitance today is highly accurate

When capacitance technology was first used to measure soil moisture in the 1970s, scientists soon realized that how quickly the electromagnetic field was charged and discharged was critical to success. Low frequencies led to large soil salinity effects on the readings. Over time, this new understanding, combined with advances in the speed of electronics, enabled the original capacitance approach to be adjusted for success. Modern capacitance sensors, such as METER sensors, use high frequencies (70 MHz) to minimize effects of soil salinity on readings.

The circuitry in capacitance sensors can be designed to resolve extremely small changes in volumetric water content, so much so, that NASA used METER’s capacitance technology to measure water content on Mars. Capacitance soil moisture sensors are easy to install and tend to have low power requirements. They may last for years in the field powered by a small battery pack in a data logger.

## TEROS and ECH20: same trusted technology

Both TEROS and ECH20 soil moisture sensors use the same trusted, high-frequency (70 MHz) capacitance technology that is published in thousands of peer-reviewed papers. Figure 3 shows the calibration data for the ECH20 5TE and TEROS 12.

## New Live Webinar

Hydraulic conductivity, or the ability of a soil to transmit water, is critical to understanding the complete water balance.

In fact, if you’re trying to model the fate of water in your system and simply estimating parameters like conductivity, you could get orders of magnitude errors in your projections. It would be like searching in the dark for a moving target. If you want to understand how water will move across and within your soil system, you need to understand hydraulic conductivity because it governs water flow.

## Get the complete soil picture

Hydraulic conductivity impacts almost every soil application: crop production, irrigation, drainage, hydrology in both urban and native lands, landfill performance, stormwater system design, aquifer recharge, runoff during flooding, soil erosion, climate models, and even soil health. In this 20-minute webinar, METER research scientist, Leo Rivera discusses how to better understand water movement through soil. Discover:

• Saturated and unsaturated hydraulic conductivity—What are they?
• Why you need to measure hydraulic conductivity
• Measurement methods for the lab and the field
• What hydraulic conductivity can tell you about the fate of water in your system

Date: August 20, 2019 at 9:00 am – 10:00 am Pacific Time

## See the live webinar

REGISTER

Can’t wait for the webinar? See a comparison of common measurement methods, and decide which soil hydraulic conductivity method is right for your application. Read the article.