Skip to content

Posts from the ‘Hydrology’ Category

Soil Hydraulic Properties—8 Ways You Can Unknowingly Compromise Your Data

Avoid costly surprises

Measuring soil hydraulic properties like hydraulic conductivity and soil water retention curves is difficult to do correctly. Measurements are affected by spatial variability, land use, sample prep, and more.

Image of a research using the SATURO infiltrometer in the field
Leo Rivera teaches soil hydraulic properties measurement best practices

Getting the right number is like building a house of cards. If one thing goes wrong—you wind up with measurements that don’t truly represent field conditions. Once your data are skewed in the wrong direction, your predictions are off, and erroneous recommendations or decisions could end up costing you a ton of time and money. 

Get the right numbers—every time

For 10 years, METER research scientist, Leo Rivera, has helped thousands of customers make saturated and unsaturated hydraulic conductivity measurements and retention curves to accurately understand their unique soil hydraulic properties. In this 30-minute webinar, he’ll explain common mistakes to avoid and best practices that will save you time, increase your accuracy, and prevent problems that could reduce the quality of your data. Learn:

  • Sample collection best practices
  • Where to make your measurements
  • How many measurements you need
  • Field mapping tools
  • How to get more out of your instruments
  • How to use the LABROS suite to fully characterize soils (i.e., full retention curves and hydraulic conductivity curves)
  • Best practices for measuring field hydraulic conductivity using SATURO

Watch it now—>

Data deep dive: When to doubt your measurements

Dr. Colin Campbell discusses why it’s important to “logic-check” your data when the measurements don’t make sense.

Image of the Wasatch Plateau

Wasatch Plateau

In the video below, he looks at weather data collected on the Wasatch Plateau at 10,000 feet (3000 meters) in the middle of the state of Utah.

Watch the video

 

Video transcript

My name is Colin Campbell. I’m a research scientist here at METER group. Today we’re going to spend time doing a data deep dive. We’ll be looking at some data coming from my research site on the Wasatch Plateau at 10,000 feet (3000 meters) in the middle of the state of Utah. 

Right now, I’m interested in looking at the weather up on the plateau. And as you see from these graphs, I’m looking at the wind speeds out in the middle of three different meadows that are a part of our experiment. At 10,000 feet right now, things are not that great. This is a picture I collected today. If you look very closely, there’s an ATMOS 41 all-in-one weather station. It includes a rain gauge. And down here is our ZENTRA ZL6 logger. It’s obviously been snowing and blowing pretty hard because we’ve got rime ice on this post going out several centimeters, probably 30 to 40 cm. This is a stick that tells us how deep the snow is up on top. 

One of the things we run into when we analyze data is the credibility of the data and one day someone was really excited as they talked to me and said, “At my research site, the wind speed is over 30 meters per second.” Now, 30 meters per second is an extremely strong wind speed. If it were really blowing that hard there would be issues. For those of you who like English units, that’s over 60 miles an hour. So when you look at this data, you might get confused and think: Wow, the wind speed is really high up there. And from this picture, you also see the wind speed is very high. 

But the instrument that’s making those measurements is the ATMOS 41. It’s a three-season weather station, so you can’t use it in snow. It’s essentially producing an error here at 30 meters per second. So I’ll have to chop out data like this anemometer data at the summit where the weather station is often encrusted with snow and ice. This is because when snow builds up on the sonic anemometer reflection device, sometimes it simply estimates the wrong wind speed. And that’s what you’re seeing here. 

This is why it’s nice to have ZENTRA cloud. It consistently helps me see if there’s a problem with one of my sensors. In this case, it’s an issue with my wind speed sensors. One of the other things I love about ZENTRA Cloud is an update about what’s going on at my site. Clearly, battery use is important because if the batteries run low, I may need to make a site visit to replace them. However, one of the coolest things about the ZL6 data logger is that if the batteries run out, it’s not a problem because even though it stops sending data over the cellular network, it will keep saving data with the batteries it has left. It can keep going for several months. 

I have a mix of data loggers up here, some old EM60G data loggers which have a different voltage range than these four ZL6 data loggers. Three of these ZL6s are located in tree islands. In all of the tree islands, we’ve collected enough snow so the systems are buried and we’re not getting much solar charging. The one at the summit collects the most snow, and since late December, there’s been a slow decline in battery use. It’s down. This is the actual voltage on the batteries. The battery percentage is around 75%. The data loggers in the two other islands are also losing battery but not as much. The snow is just about to the solar charger. There’s some charging during the day and then a decrease at night. 

So I have the data right at my fingertips to figure out if I need to make a site visit. Are these data important enough to make sure the data loggers call in every day? If so, then I can decide whether to send someone in to change batteries or dig the weather stations out of the snow. 

I also have the option to set up target ranges on this graph to alert me whether the battery voltage is below an acceptable level. If I turn these on, it will send me an email if there’s a problem. So these are a couple of things I love about ZENTRA cloud that help me experiment better. I thought I’d share them with you today. If you have questions you want to get in contact me with me, my email is [email protected]. Happy ZENTRA clouding.

Download the researcher’s complete guide to soil moisture—>

Download the researcher’s complete guide to water potential—>

Soil sensors help solve putting green water distribution issues

Distribution of soil water in high-sand-content putting greens is a major concern for golf course superintendents. Gravel is commonly used as a component of a sand-based root zone to increase moisture retention, but due to gravity, the contour and slope of a putting green significantly affect moisture retention. Coarse-textured soils often become too dry in higher elevations and too wet in lower elevations. This hampers performance and increases water and labor inputs. 

Image of a golfer putting on a putting green at a golf course
The contour of a putting green affects moisture retention


To fix this problem, Thomas Green, a graduate student at Michigan State University, and a team of researchers are assessing the impact of gravel layer particle size and slope on soil water content in a variable-depth, high-sand content root zone.  He says, “Due to lack of published research and the USGA’s wide-ranged specification for gravel selection based on the root zone material, determining the optimal bridging, filtering, permeability, and uniformity factors capable of increasing root zone soil moisture uniformity is critical.”

Validating previous turfgrass experiments

Green and his team set out to validate previous turf experiments done at MSU which showed that increasing the particle size difference between the gravel and root zone (sand) layers, in combination with a variable-depth root zone (shallower at the slope apex, deeper at the slope base) would improve soil moisture uniformity. 

He says, “We wanted to retain this moisture consistently throughout the whole profile over the entire green. Our experiments decreased the root zone depth in relation to our gravel layer. So at the peak, we reduced the root zone, and in the valleys, we increased the root zone to eliminate wet spots where water accumulates.”

Water potential is the key

Green says the goal was to manipulate the “head” (or water potential) in the peaks and valleys. He explains, “We tested particle size differences between a high-sand, root-zone mix and the gravel layer. Past studies show that the greater the difference between the root zone particle size and the gravel particle size, the more water is retained at the interface. Essentially in the valleys, we increased the depth of the sand layer to create (in physics terms) a large head that forced more water to drain. At the top of the green, we did the opposite and made a thin layer of sand so more water was available. Basically, it was all about manipulating the water potential or tension on the water to retain the right level of moisture.”

The diagrams below illustrate the physics of how this works:

Diagram of sand and gravel layers in a putting green
Figure 1. Diagram of sand and gravel layers in a putting green

In Figure 1, the gravel provides a textural barrier where pores must be saturated for water to move into the gravel.

Close up diagram of tall sand layers in the valley
Figure 2. Closeup of tall sand layer in the valley

Figure 2 is a closeup of the tall layer. Cohesion of water molecules together and adhesion to soil particles ties water together and exerts downward force or tension on water at the top of the profile. The larger the height from the top of the profile to the saturated surface, the more tension on the water (lower water potential).

Close up diagram of short sand layer at the peak
Figure 3. Closeup of short sand layer at the peak

Figure 3 is a closeup of the short sand layer. Shorter height above the saturation zone reduces the tension in the top layer of soil (higher water potential). Thus, the high part of the green with the thinnest sand layer will have less tension and more water than the thick layer in the lower part of the green. To visualize what soil tension is like, think of people hanging on people (Figure 4). The more people there are, the more “pull” will be exerted on the top person.

Diagram of a comparison of soil tension to people hanging on people
Figure 4. Soil tension is like people hanging on people. The more people, the more pull exerted on the top person.

Eliminating edge effects

Green used METER soil moisture and temperature sensors at three different depths along with METER data loggers to validate that the water was in the right place. He inserted the sensors into an enormous box that mimicked a putting green. “I created a 4-ft x 4-ft module to simulate a sloping green. I had to figure out how large it should be to eliminate edge effects (water preferentially moving toward the container edges). The soil moisture sensor helped me determine just how large this box had to be to get accurate measurements.”

Green says the surface measurements were the most important, “I was interested in that top depth because in a golf setting, that’s where you need to control moisture. In a putting green, turfgrass roots aren’t very deep because the grass is so short.”

USGA has adopted the new method

Green says the results turned out as expected. “We expected that if we increased the gravel particle size difference and reduced sand depth, we would see increased water retention in our root zone profile, and that’s exactly what happened. The great thing is the USGA has now somewhat adopted these new recommendations. More and more golf courses are going to this construction method. It’s good for the industry because they’re conserving water.”

In the future, Green says he’d like to explore some research done by F.W. Taylor in the early 1900s. Taylor thought about using a vertical sand or gravel strip contoured on a slope to form a barrier to water moving downhill instead of plastic or polyethylene. This idea is illustrated beautifully in the classic 1950s era film by Dr. Walter Gardner.

Download the researcher’s complete guide to soil moisture—>

Download the researcher’s complete guide to water potential—>

Founders of Environmental Biophysics: Walter Gardner

Visualizing water flow in soil

This week, in our “Founders” series, we highlight a soil physicist.

Image of soil being held in a researchers hand

Water movement in soil defies intuition

When Dr. Walter Gardner passed away in June (2015), many viewed the film Water Movement in Soils as one of the main accomplishments of a remarkable career. Dr. Gardner and Jack Hsieh made the film in 1959 at Washington State University. The technology they used was impressive—it was years before advanced electronics would make time lapse movies routine—but Dr. Gaylon Campbell finds the ideas behind the experiments even more remarkable.

“Once you’ve seen the film, you can go back to the unsaturated flow theory and see how it would work,” Campbell says, “but the ideas aren’t really obvious. I wish I knew how he thought of doing that.”

At one point in the film, Gardner himself says that the phenomena he illustrates in the film can be seen in nature “if one observes carefully.” It’s possible that some of these careful observations were made in the fields around Washington State University, where farmers often turned the surface layer of soil over using a moldboard plow. This created a layer of surface soil with a layer of straw underneath it—exactly the conditions Gardner describes in the film as leading to erosion, reduced water in the root zone, and damage to the soil in the plow zone.

Though agriculture was the obvious target of the film, for a while it was also a big hit with the US Golf Association. Golf greens are mown short and get a lot of abuse. They need to be watered and fertilized heavily, but how do you keep enough water on the plants between irrigations without leaching nutrients out of the root zone? Water Movement in Soils provides a perfect answer. Gardner consulted for the USGA and used his film to train people who designed and constructed the greens.

Water movement in soil defies intuition

Our intuitions about how water moves in soil are often wrong. More than fifty years after it was made, this classic film still has the power to help people understand what’s really going on.

Watch the video

 

Learn more

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential

Best of 2019: Environmental Biophysics

In case you missed them, here are our most popular educational webinars of 2019. Watch any or all of them at your convenience.

Lab vs. In Situ Water Characteristic Curves

Image of a researcher running hand across wheat

Researcher Running A Hand Across Wheat

Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Watch it here—>

Hydrology 101: The Science Behind the SATURO Infiltrometer

Image of a fallen tree being supported off the ground by many other trees

A Forest With Fallen Trees

Dr. Gaylon S. Campbell teaches the basics of hydraulic conductivity and the science behind the SATURO automated dual head infiltrometer.

Watch it here—>

Publish More. Work Less. Introducing ZENTRA Cloud

Image of a researcher collecting information from a ZL6 data logger

Researcher is Collecting Data from the ZL6 Data Logger

METER research scientist Dr. Colin Campbell discusses how ZENTRA Cloud data management software simplifies the research process and why researchers can’t afford to live without it.

Watch it here—>

Soil Moisture 101: Need-to-Know Basics

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it.

Watch it here—>

Soil Moisture 201: Moisture Release Curves—Revealed

Image of rolling hills of farm land

Rolling Hills of Farm Land

A soil moisture release curve is a powerful tool used to predict plant water uptake, deep drainage, runoff, and more.

Watch it here—>

Soil Moisture 301: Hydraulic Conductivity—Why You Need It. How to Measure it.

Image of a researcher measuring with the HYPROP balance

Researcher measuring with the HYPROP balance

If you want to predict how water will move within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Watch it here—>

Soil Moisture 102: Water Content Methods—Demystified

Image of a researcher holding a TEROS 12 in front of a field

Modern Sensing is more than just a Sensor

Dr. Colin Campbell compares measurement theory, the pros and cons of each method, and why modern sensing is about more than just the sensor.

Watch it here—>

Soil Moisture 202: Choosing the Right Water Potential Sensor

Image of a dirt plowed field being used for electrical conductivity

Electrical Conductivity

METER research scientist Leo Rivera discusses how to choose the right field water potential sensor for your application.

Watch it here—>

Water Management: Plant-Water Relations and Atmospheric Demand

Dr. Gaylon Campbell shares his newest insights and explores options for water management beyond soil moisture. Learn the why and how of scheduling irrigation using plant or atmospheric measurements. Understand canopy temperature and its role in detecting water stress in crops. Plus, discover when plant water information is necessary and which measurement(s) to use.

Watch it here—>

How to Improve Irrigation Scheduling Using Soil Moisture

Image of a crop field

Capacitance

Dr. Gaylon Campbell covers the different methods irrigators can use to schedule irrigation and the pros and cons of each.

Watch it here—>

Next up:

Soil Moisture 302: Hydraulic Conductivity—Which Instrument is Right for You?

Image of plants growing out of the sand

Leo Rivera, research scientist at METER teaches which situations require saturated or unsaturated hydraulic conductivity and the pros and cons of common methods.

Watch it here—>

Image of grapes growing off of a tree

Predictable Yields using Remote and Field Monitoring

New data sources offer tools for growers to optimize production in the field. But the task of implementing them is often difficult. Learn how data from soil and space can work together to make the job of irrigation scheduling easier.

Watch it here—>

Learn more

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential

Soil Moisture 301—Hydraulic Conductivity Why you need it. How to measure it.

New Live Webinar

Hydraulic conductivity, or the ability of a soil to transmit water, is critical to understanding the complete water balance.

Researcher running hand over wheat
Soil hydraulic conductivity impacts almost every soil application.

In fact, if you’re trying to model the fate of water in your system and simply estimating parameters like conductivity, you could get orders of magnitude errors in your projections. It would be like searching in the dark for a moving target. If you want to understand how water will move across and within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Get the complete soil picture

Hydraulic conductivity impacts almost every soil application: crop production, irrigation, drainage, hydrology in both urban and native lands, landfill performance, stormwater system design, aquifer recharge, runoff during flooding, soil erosion, climate models, and even soil health. In this 20-minute webinar, METER research scientist, Leo Rivera discusses how to better understand water movement through soil. Discover:

  • Saturated and unsaturated hydraulic conductivity—What are they?
  • Why you need to measure hydraulic conductivity
  • Measurement methods for the lab and the field
  • What hydraulic conductivity can tell you about the fate of water in your system

Date: August 20, 2019 at 9:00 am – 10:00 am Pacific Time

See the live webinar

REGISTER

Can’t wait for the webinar? See a comparison of common measurement methods, and decide which soil hydraulic conductivity method is right for your application. Read the article.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Engineers Without Borders alleviates Panamanian village water security issues

Engineers Without Borders (EWB) at Washington State University in Pullman, WA has partnered with a small indigenous village located in the Comarca Ngäbe-Buglé region of Panama. The relationship between this village and EWB at WSU began in 2016 when WSU alumna Destry Seiler began living in the village as a Peace Corps volunteer hoping to help solve the community’s water security needs.

A picture of Comarca Ngäbe-Buglé region photo taken from a small village in Panama

A view of the Comarca Ngäbe-Buglé taken from the village in Panama.

During the rainy season in this village, approximately 20 households have access to water through a two-inch PVC pipe that operates by gravity. It runs approximately 1.5 kilometers through the jungle from a spring source higher in the mountain to small hose spickets located close to the homes on the distribution line. The other ~80 households do not have access to the distribution line and walk to the closest river or creek up to five times a day to find water. However, during the dry season, most spring sources dry up, leaving all households in the community to walk to the diminished supply of rivers to find their water.

Water line supplying 20 village homes with water during the rainy season

A view of the water line currently serving ~20 homes in the village during the rainy season.

The village initially requested assistance from the Peace Corps in order to find a year-round source of clean water. But, after living in the village for 1.5 years, Ms. Seiler could not locate spring sources that both survived through the dry season and could also reach the homes in need through a gravity fed system.

Then Ms. Seiler began thinking of groundwater as a possible new water source for the community. Unfortunately, groundwater data for the Comarca Ngäbe-Buglé was not available from the local government agency. So she decided to reach out to WSU professor, Dr. Karl Olsen, to ask for assistance with a groundwater research project, and the EWB club was formed.

The club visited the village for the first time along with Ms. Seiler and faculty mentor Dr. Karl Olsen in August 2018 to do an initial survey of water use and needs, as well as to create a first-ever map of the area. EWB will return to Panama this June 2019 to implement a solar-powered water pump requested by a section of the community to deliver water from a spring source to approximately 20 homes on the nearest ridgeline. The club will also install latrines in a nearby community. They will continue the groundwater survey of the area through more extensive mapping and perform a more advanced analysis with the support of a local hydrologic company.

EWB members and WSU students next to the village sign

EWB members and WSU students Patrick Roubicaud, Kristy Watson, Destry Seiler, Perri Piller, Rene McMinn, and Kevin Allen during their visit to Panama, August 2018.

The team will use a METER-donated ATMOS 41 weather station along with a ZL6 data logger and ZENTRA Cloud software to assist in the data collection necessary to begin mapping groundwater in the area. The weather station will record precipitation, solar radiation, vapor pressure, temperature, wind, and relative humidity data that will enable EWB to begin to quantify environmental conditions and available water supply. When combined with streamflow data from rivers in the area, groundwater availability can also begin to be estimated. Because of ZENTRA Cloud, EWB will be able to view this information near-real time as well as share it with the village to help guide their design decisions. EWB plans to install the ATMOS 41 at a nearby village school to ensure weather station security and to provide an opportunity for local students to learn about their surrounding environment in a way they have not been able to do before.

To learn more about the Panamanian village or the work EWB from WSU is doing, visit ewb.wsu.edu.

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather station is right for you.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

What’s next for Fukushima?

Shortly after the Fukushima disaster, we donated environmental sensors to Dr. Masaru Mizoguchi, a scientist colleague at the University of Tokyo, to help him contrive a more environmentally friendly method to rid rice fields in the villages near Fukushima of the radioactive isotope cesium 137.

Fukushima rice patties

Scientists continue to search for ways to prevent the recontamination of the rice paddies.

Since then, his efforts, along with the efforts of a team of scientists and citizens, have made the rice grown in the paddies near the disaster site safe for human consumption. But questions and challenges remain. For instance, what will happen to the contaminated soil surrounding the decontaminated area? Will it settle in nearby stream beds, eventually contaminating the rice paddies? And what kind of erosion will come from the nearby tree-covered and clearcut hillslopes?

Recently, our scientists and videographers visited the villages near Fukushima to film some of the progress being made. Watch the video, and read the full story here.

See performance data for the ATMOS 41 weather station used in Fukushima research.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Double Ring vs. SATURO: Two Infiltrometers Go Head to Head

The SATURO and the double-ring infiltrometer are both ring infiltrometers that infiltrate water from the surface into soils. Overall, they compare fairly well (see comparison). The main difference is how they deal with three-dimensional flow in the Kfs calculation. The SATURO uses the multiple-ponded head analysis approach to get a more direct estimation of alpha, which is used to determine how the soil pulls the water laterally. The double-ring infiltrometer uses a larger outer ring to act as a buffer from three-dimensional flow. This requires more water, and literature suggests that it doesn’t perform well. Also, with a double-ring infiltrometer, there is still a need to estimate alpha in the equations. This is typically done from a look-up table based on soil type and often results in error.

SATURO Infiltrometer which uses multiple-ponded head analysis approach

The SATURO is an automated infiltrometer which uses the multiple-ponded head analysis approach.

How do SATURO readings compare to double-ring infiltrometer readings?

We compared the SATURO with a 6-inch (15.24 cm) inner ring diameter against a double-ring infiltrometer with a 6-inch (15.24 cm) inner ring diameter and an outer ring with a 12-inch (30.48 cm) diameter.

Hydrology 301: What a Hydraulic Conductivity Curve Tells You & More

Hydraulic conductivity is the ability of a porous medium (soil for instance) to transmit water in saturated or nearly saturated conditions. It’s dependent on several factors: size distribution, roughness, tortuosity, shape, and degree of interconnection of water-conducting pores. A hydraulic conductivity curve tells you, at a given water potential, the ability of the soil to conduct water.

Researcher measuring with the HYPROP balance

One factor that affects hydraulic conductivity is how strong the structure is in the soil you’re measuring.

For example, as the soil dries, what is the ability of water to go from the top of a sample [or soil layer in the field] to the bottom. These curves are used in modeling to illustrate or predict what will happen to water moving in a soil system during fluctuating moisture conditions. Researchers can combine hydraulic conductivity data from two laboratory instruments, the KSAT and the HYPROP, to produce a full hydraulic conductivity curve (Figure 1).

Hydraulic conductivity curve

Figure 1. Example of hydraulic conductivity curves for three different soil types. The curves go from field saturation on the right to unsaturated hydraulic conductivity on the left.  They illustrate the difference between a well-structured clayey soil to a poorly structured clayey soil and the importance of structure to hydraulic conductivity especially at, or near, saturation.

In Hydrology 301, Leo Rivera, Research Scientist at METER, discusses hydraulic conductivity and the advantages and disadvantages of methods used to measure it.

Watch the webinar below.

 

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>