Skip to content

Soil moisture: ECH20 vs. TEROS, which is better?

See how the new TEROS soil moisture sensor line compares with METER’s trusted ECH20 sensor line.

TEROS 12 soil moisture sensor

Volumetric water content—defined

To evaluate the performance of any water content sensor, you need to first understand its technology. In order to do this, it’s necessary to understand how volumetric water content (VWC) is measured. Volumetric water content is the volume of water divided by the volume of soil (Equation 1) which gives the percentage of water in a soil sample.

So, for instance, if a volume of soil (Figure 1) was made up the following constituents: 50% soil minerals, 35% water, and 15% air, that soil would have a 35% volumetric water content.

The percentage of water by mass (wm) can be measured directly using the gravimetric method, which involves subtracting the oven-dry soil mass (md) from the mass of moist soil (giving the mass of water, mw) and dividing by md (Equation 2).

The resulting gravimetric water content can be converted to volumetric by multiplying by the dry bulk density of the soil (b) (Equation 3).

Why capacitance technology works

Volumetric water content can also be measured indirectly: meaning a parameter related to VWC is measured, and a calibration is used to convert that amount to VWC. All METER soil moisture sensors use an indirect method called capacitance technology. In simple terms, capacitance technology uses two metal electrodes (probes or needles) to measure the charge-storing capacity (or apparent dielectric permittivity) of whatever is between them.

Table 1 illustrates that every common soil constituent has a different charge-storing capacity. In a soil, the volume of most of these constituents will stay constant over time, but the volume of air and water will fluctuate.

Since air stores almost no charge and water stores a large charge, it is possible to measure the change in the charge-storing ability of a soil and relate it to the amount of water (or VWC) in that soil. (For a more detailed explanation of capacitance technology watch our Soil Moisture: methods/applications webinar.

Capacitance today is highly accurate

When capacitance technology was first used to measure soil moisture in the 1970s, scientists soon realized that how quickly the electromagnetic field was charged and discharged was critical to success. Low frequencies led to large soil salinity effects on the readings. Over time, this new understanding, combined with advances in the speed of electronics, enabled the original capacitance approach to be adjusted for success. Modern capacitance sensors, such as METER sensors, use high frequencies (70 MHz) to minimize effects of soil salinity on readings.

The circuitry in capacitance sensors can be designed to resolve extremely small changes in volumetric water content, so much so, that NASA used METER’s capacitance technology to measure water content on Mars. Capacitance soil moisture sensors are easy to install and tend to have low power requirements. They may last for years in the field powered by a small battery pack in a data logger.   

TEROS and ECH20: same trusted technology

Both TEROS and ECH20 soil moisture sensors use the same trusted, high-frequency (70 MHz) capacitance technology that is published in thousands of peer-reviewed papers. Figure 3 shows the calibration data for the ECH20 5TE and TEROS 12.

Read the full article….

Soil Moisture 301—Hydraulic Conductivity Why you need it. How to measure it.

New Live Webinar

Hydraulic conductivity, or the ability of a soil to transmit water, is critical to understanding the complete water balance.

Soil hydraulic conductivity impacts almost every soil application.

In fact, if you’re trying to model the fate of water in your system and simply estimating parameters like conductivity, you could get orders of magnitude errors in your projections. It would be like searching in the dark for a moving target. If you want to understand how water will move across and within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Get the complete soil picture

Hydraulic conductivity impacts almost every soil application: crop production, irrigation, drainage, hydrology in both urban and native lands, landfill performance, stormwater system design, aquifer recharge, runoff during flooding, soil erosion, climate models, and even soil health. In this 20-minute webinar, METER research scientist, Leo Rivera discusses how to better understand water movement through soil. Discover:

  • Saturated and unsaturated hydraulic conductivity—What are they?
  • Why you need to measure hydraulic conductivity
  • Measurement methods for the lab and the field
  • What hydraulic conductivity can tell you about the fate of water in your system

Date: August 20, 2019 at 9:00 am – 10:00 am Pacific Time

See the live webinar

REGISTER

Can’t wait for the webinar? See a comparison of common measurement methods, and decide which soil hydraulic conductivity method is right for your application. Read the article.

Freshwater shrimp grown in Korean rice paddy boost grower income

In South Korea, falling rice prices threaten the livelihood of many rice growers. Recently our Korean reps told us about an experiment performed in Jinju city, Gyeongsangnam-do, South Korea, by GNARES (Gyeongsangnam-do Agricultural Research & Extension Services) to increase grower income through simultaneous freshwater shrimp, lotus plant, and rice cultivation in a paddy field.

RT-1 water temperature sensors were installed along with METER data loggers to monitor the water temperature, ensuring it was optimal for shrimp growth. Through this experiment, GNARES found that environmental conditions were good for cultivating freshwater shrimp in this area. 

 

Engineers Without Borders alleviates Panamanian village water security issues

Engineers Without Borders (EWB) at Washington State University in Pullman, WA has partnered with a small indigenous village located in the Comarca Ngäbe-Buglé region of Panama. The relationship between this village and EWB at WSU began in 2016 when WSU alumna Destry Seiler began living in the village as a Peace Corps volunteer hoping to help solve the community’s water security needs.

A view of the Comarca Ngäbe-Buglé taken from the village in Panama.

During the rainy season in this village, approximately 20 households have access to water through a two-inch PVC pipe that operates by gravity. It runs approximately 1.5 kilometers through the jungle from a spring source higher in the mountain to small hose spickets located close to the homes on the distribution line. The other ~80 households do not have access to the distribution line and walk to the closest river or creek up to five times a day to find water. However, during the dry season, most spring sources dry up, leaving all households in the community to walk to the diminished supply of rivers to find their water.

A view of the water line currently serving ~20 homes in the village during the rainy season.

The village initially requested assistance from the Peace Corps in order to find a year-round source of clean water. But, after living in the village for 1.5 years, Ms. Seiler could not locate spring sources that both survived through the dry season and could also reach the homes in need through a gravity fed system.

Then Ms. Seiler began thinking of groundwater as a possible new water source for the community. Unfortunately, groundwater data for the Comarca Ngäbe-Buglé was not available from the local government agency. So she decided to reach out to WSU professor, Dr. Karl Olsen, to ask for assistance with a groundwater research project, and the EWB club was formed.

The club visited the village for the first time along with Ms. Seiler and faculty mentor Dr. Karl Olsen in August 2018 to do an initial survey of water use and needs, as well as to create a first-ever map of the area. EWB will return to Panama this June 2019 to implement a solar-powered water pump requested by a section of the community to deliver water from a spring source to approximately 20 homes on the nearest ridgeline. The club will also install latrines in a nearby community. They will continue the groundwater survey of the area through more extensive mapping and perform a more advanced analysis with the support of a local hydrologic company.

EWB members and WSU students Patrick Roubicaud, Kristy Watson, Destry Seiler, Perri Piller, Rene McMinn, and Kevin Allen during their visit to Panama, August 2018.

The team will use a METER-donated ATMOS 41 weather station along with a ZL6 data logger and ZENTRA Cloud software to assist in the data collection necessary to begin mapping groundwater in the area. The weather station will record precipitation, solar radiation, vapor pressure, temperature, wind, and relative humidity data that will enable EWB to begin to quantify environmental conditions and available water supply. When combined with streamflow data from rivers in the area, groundwater availability can also begin to be estimated. Because of ZENTRA Cloud, EWB will be able to view this information near-real time as well as share it with the village to help guide their design decisions. EWB plans to install the ATMOS 41 at a nearby village school to ensure weather station security and to provide an opportunity for local students to learn about their surrounding environment in a way they have not been able to do before.

To learn more about the Panamanian village or the work EWB from WSU is doing, visit ewb.wsu.edu.

See performance data for the ATMOS 41 weather station.

Soil Moisture 101: Need-to-Know Basics

Harness the power of soil moisture

Researchers measure evapotranspiration and precipitation to understand the fate of water—how much moisture is deposited, used, and leaving the system. But if you only measure withdrawals and deposits, you’re missing out on water that is (or is not) available in the soil moisture savings account. Soil moisture is a powerful tool you can use to predict how much water is available to plants, if water will move, and where it’s going to go.

Soil moisture 101 explores soil water content vs. soil water potential

What you need to know

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it. In this 20-minute webinar, discover:

  • Why soil moisture is more than just an amount
  • Water content: what it is, how it’s measured, and why you need it
  • Water potential: what it is, how it’s different from water content, and why you need it
  • Whether you should use soil moisture sensors, water potential sensors, or both
  • Which sensors measure each type of parameter

Watch the webinar

Soil moisture 201 coming soon

Sign up to attend the live webinar:  Soil Moisture 201: Moisture Release Curves—Revealed June 11, at 9am PST.

Why mesonets make weather prediction more accurate

The staggering cost of Montana’s “flash drought”

Some people figured it was climate change. One statistician said it was a part of a cyclical trend for poor crop years. Whatever the cause, the 2017 flash drought that parched the entire state of Montana and most of South Dakota, severely impacted the profitability of ranchers and farmers. In western Montana, fires burned some of the largest acreages in recent history. It resulted in one of the biggest wildfire incident reports (over one-million acres) and caused virtually 100% crop loss in northeastern Montana. The U.S. Dept. of Agriculture estimated the crop loss to be in the hundreds of millions of dollars, and one question was on everybody’s mind—why did no one see it coming?

Figure 1. Montana drought conditions August 2017 (Source: Montana State Library website: https://mslservices.mt.gov/Geographic_Information/Maps/drought/)

Getting the right weather data

The 2017 Montana Dept. of Natural Resources and Conservation spring drought report indicated plenty of water: “By the end of the month, almost all drought concern was removed from the state, with the exception of Wibaux and Fallon Counties….As of May 9, 2017, Montana was 98.45% drought free.” But in late May, an abrupt shift in weather conditions led to one of the hottest, driest summers on record.

The problem, says Kevin Hyde, Montana State Mesonet Coordinator, lies not only in the need for more weather data but in obtaining the right kind of data. He says, “One of the reasons drought was missed was because we’re still thinking you measure drought by snowpack and how much water is in the river, which is really great if you’ve got water rights. But we’ve got a lot of dryland out there.”

In addition to weather monitoring, Hyde is a big proponent of adding soil moisture and NDVI measurements to each of the Montana Mesonet stations he oversees. He says, “The conventional weather station only measures atmospheric conditions. But ultimately, to make any decisions, we’ve got to know not just how much water comes into the system, but how much goes into the soil. And even that’s not enough…because what we really need to know is how the water situation is going to affect plants.”

Hyde says more data are needed to warn growers and ranchers about upcoming weather risks. He points to the fact that increasing evapotranspiration got missed leading up to the summer of 2017. “We realized that if we were looking carefully at reference ET, we might have seen it about a month earlier. What would people have done? They would have changed their calf purchases. They would have figured out what kind of forage they needed to buy. These are the types of decisions people can make if they know the information sooner.”

Was the drought over? Soil moisture illuminates the bigger picture

Heavy rains came mid-September of 2017, which led some people to believe the drought was over. However, changes in soil moisture told a different story. Very little of the rain made it into the soil. “At the Havre, MT station you can see we had some heavy precipitation events. Then we had early October snows. So people expected good soil water recharge. But at the end of the day, we didn’t get it. On Sept.15th, soil moisture sensors showed a big soil moisture response at the surface but only a marginal response at 8 inches.” The melt of early October snows onto the soil, still damp from the September rain, drained to 20 inches or more. But as the snowmelt dissipated, there was minimal net gain going into the winter.

Figure 2. Soil moisture traces at the Havre, MT weather station

Predictive models need more coverage to be effective

Typically in the U.S., the National Weather Service (a division of NOAA) puts out a network of weather monitoring stations spaced out across the country, and that data gets fed into forward-looking models that help predict the weather. Dr. Doug Cobos, research scientist at METER says, “What people are finding out is that putting in a sparse network of very expensive systems has done really well. It’s been a good thing. But the spatial gaps in those networks are a problem, especially for agriculture producers and ranchers. They need to know what’s happening where they are.”

Hyde agrees, adding that we need better predictive tools that help growers and ranchers make practical decisions based on data rather than guessing. “January 1st is when the decision has to be made—do I buy cows? Do I sell cows? Do I need more pasture? But many predictions start on April 1st. As one rancher puts it, ‘We don’t bother with Las Vegas. We sit around the dining room table at the beginning of the year and put a million dollars on one shot.’”

Mesonets improve spatial distribution

Mesonets present a practical solution for the need to fill in data gaps between large, complex weather stations. The Montana Mesonet currently has 57 stations interspersed throughout the state, and through partnerships with both the public and private sector, they’re adding more stations every year.

Figure 3. Map of MT Mesonet weather stations (source: http://climate.umt.edu/mesonet/)

At each location, the Montana Mesonet team installs METER all-in-one weather stations, soil moisture sensors, NDVI sensors and data loggers that integrate with ZENTRA Cloud: an easy-to-use web software that seamlessly integrates into third-party applications through an API. He says the system enables better spatial distribution and reliability. “When we were deciding on equipment we asked ourselves: What kind of technology should we use? It had to provide high data integrity. It had to be easy to deploy and maintain. And it had to be cost effective. There’s not a lot of people in that sector. METER systems are low profile, they’re affordable, and the reliability is there. I look at some other mesonets, and they cannot afford to build out further because they are relying on large, complex, expensive systems. That’s where the METER system comes into play.”

Figure 4. Montana Mesonet station setup (Photo credit: Kevin Hyde)

Betting on the future

The Mesonet team and its partners are excited to see how their data will mesh with the available predictive tools to be the most useful and practical for growers and ranchers throughout the state, and they realize that there is still much work to do. “It’s not enough just to get the instrumentation out there. The overall crux is: how do we build the information network, and how do we build a relationship with the producers so that we can have an iterative and interactive conversation?” says Hyde. “We know there needs to be an education in how to use and interpret the data. For example: what is NDVI, and what can we learn from it? A lot of what we need to do is translate science into practical terms.” But he adds that it doesn’t need to be perfect. “What the farmers have said to us is, ‘We don’t need exact numbers. We’re gamblers. Give us probability. Teach us what it means, and we’ll make the decision.’”

Find more information on the Montana Mesonet here.

See performance data for the ATMOS 41 weather station.

Just released: ATMOS 41 comparison testing data

Climate parameters such as precipitation, air temperature, and wind speed can change considerably across short distances in the natural environment. However, most weather observations either sacrifice spatial resolution for scientific accuracy or research-grade accuracy for spatial resolution.

weather station

ATMOS 41 all-in-one weather station

The ATMOS 41 represents an optimization of both. It was carefully engineered to maximize accuracy at a price point that allows for spatially distributed observations. Additionally, because many researchers need to avoid frequent maintenance and long setup times, the ATMOS 41 was designed to reduce complexity and withstand long-term deployment in harsh environments. To eliminate breakage, it contains no moving parts, and it only requires recalibration every two years. Since all 14 measurements are combined in a single unit, it can be deployed quickly and with almost no effort. Its only requirement is to be mounted and leveled on top of a pole with an unobstructed view of the sky.

Comparison testing and sensor-to-sensor variability data

METER released the ATMOS 41 in January 2017 after extensive development and testing with partnerships across the world, in Africa, Europe, and the US. We performed comparison testing with high-quality, research-grade non-METER sensors and conducted time-series testing for sensor-to-sensor variability.

See performance data for the ATMOS 41 weather station

Why does my soil moisture sensor read negative?

How is a negative number possible?

METER soil moisture sensors measure the dielectric constant of the substrate in which they are installed. They are designed to measure soil, which has a dielectric constant of around 5.

METERTEROS 12 soil moisture sensor

Water has a dielectric of approximately 80, so if we assume that a dry soil has a dielectric of 5 (VWC = 0.00 m3/m3), then changes to the bulk dielectric read by the soil moisture sensor will be attributable to changes in water content. If you read a METER sensor in air, which has a dielectric constant of 1, you will quite naturally get a negative number.   

Improving accuracy of dielectric soil moisture sensors

There are two common causes for negative readings on a METER soil moisture sensor:  

1) Poor contact with the soil resulting from improper installation or disturbance

Air gaps next to a sensor will contribute the lower dielectric of air to the measurement resulting in an underestimation of VWC. Air gaps can arise if enough care is not taken to pack soil around the sensor body to approximate native bulk density. Sensors that have been disturbed, such as having a cable tripped over, can also develop air gaps that can result in negative results in dry soils. (To reduce the possibility of air gaps when installing METER sensors, use the new TEROS borehole installation tool

2) A calibration that is inappropriate for the soil in which the sensor is installed

If the standard mineral calibration is used, an error of ~ 3-4% can be expected in METER sensor readings. Negative numbers can be observed in oven-dry soils (by definition a VWC of 0.0 m3/m3) down to ~ – 0.02 m3/m3 with no malfunction of the sensor. The dielectric constant of the soil is assumed to be 5 and this is a valid assumption in the majority of soils of primarily mineral composition. If your soil has a different dielectric constant, such as can occur in soils with high organic matter content, then the uncertainty in your measurements will increase. This is not a large problem because METER sensors can be calibrated to match a given soil with very little investment in resources.

Want more details?  

Watch our webinar titled Why Does My Sensor Read Negative below. This webinar is designed for those who use electromagnetic sensors (capacitance/TDR/FDR) to measure soil water content. Learn about the theory behind the measurements. Dr. Doug Cobos discusses:

  • What is volumetric water content?
  • Dielectric measurement theory basics
  • Dielectric mixing models
  • Why might a sensor read a negative VWC?
  • Can a sensor really have 2% VWC accuracy for all soils?
  • Sources of error in dielectric measurement methods
  • Improving accuracy of dielectric measurements

 

Water holding and temperature patterns of canopy soil in an old-growth forest

The deadline is fast approaching to apply for the 2019 Grant A. Harris Fellowship. The fellowship awards $10,000 in METER research instrumentation to six U.S. or Canadian graduate students studying any aspect of agricultural, environmental, or geotechnical science.

(Image source: https://vimeo.com/69136931)

Camila Tejo Haristoy, former University of Washington grad student, was a Grant A. Harris Fellowship winner. She used METER soil moisture and temperature sensors to study the water holding and temperature patterns of canopy soil in an old-growth Sitka Spruce forest in Washington state. Sitka Spruce tree crowns contain large accumulations of organic matter known as “canopy soil”.  These accumulations provide substrate and habitat for a broad community of plants, insects, and other arboreal species. Using tree-climbing techniques, Camila installed soil moisture sensors in the canopy soils of spruce trees from an old-growth stand in the Olympic Peninsula, Washington.

This study characterized for the first time environmental conditions associated with soil mats within the crown of spruce trees, providing a framework for understanding the distribution and activity of epiphytic plants, nutrient dynamics, and associated canopy organisms.

Watch the documentary

Watch a fascinating 7-minute documentary of Camila’s interesting and exciting research. The documentary description: “Camila spends long rainy days climbing into treetops, taking temperature and moisture measurements, and collecting soil and plant samples. In the process, she interacts with a seldom seen, barely understood, and lushly beautiful environment.” (source https://vimeo.com/69136931)

Watch the video 

Recharge your research

Apply for the Grant A. Harris Fellowship today.

What’s next for Fukushima?

Shortly after the Fukushima disaster, we donated environmental sensors to Dr. Masaru Mizoguchi, a scientist colleague at the University of Tokyo, to help him contrive a more environmentally friendly method to rid rice fields in the villages near Fukushima of the radioactive isotope cesium 137.

Scientists continue to search for ways to prevent the recontamination of the rice paddies.

Since then, his efforts, along with the efforts of a team of scientists and citizens, have made the rice grown in the paddies near the disaster site safe for human consumption. But questions and challenges remain. For instance, what will happen to the contaminated soil surrounding the decontaminated area? Will it settle in nearby stream beds, eventually contaminating the rice paddies? And what kind of erosion will come from the nearby tree-covered and clearcut hillslopes?

Recently, our scientists and videographers visited the villages near Fukushima to film some of the progress being made. Watch the video, and read the full story here.

See performance data for the ATMOS 41 weather station used in Fukushima research.