Skip to content

Posts tagged ‘water potential’

Do Soil Microbes Influence Plant Response to Heat Waves?

Rachel Rubin, PhD candidate at Northern Arizona University, is interested in the intersection of extreme climate events and disturbance, which together have a much greater impact on plant communities. She and her team at Northern Arizona University are investigating the role soil microbes play in plant response to heat waves, including associated impacts to microbial-available and plant-available water.

Wheat with sun shining through it

Plants have a tight co-evolutionary history with soil microbes. It has been said that there is no microbe-free plant on earth.

Because heat waves threaten plant productivity, they present a growing challenge for agriculture, rangeland management, and restoration.

Can Soil Microbes Increase Heat Resistance?

Many plants maintain mutualistic associations with a diverse microbiome found within the rhizosphere, the region of soil that directly surrounds plant roots. These “plant growth-promoting rhizobacteria” and arbuscular mycorrhizal fungi provision limiting resources including water, phosphorus and nitrogen in exchange for photosynthetically derived sugars. However, we understand very little about whether extreme events can disrupt these interactions.

Tubes of layered dirt

Fig. 1. Fine roots exploring the inoculum that was added as a band between layers of potting mixture.

Rachel and her team exposed rhizosphere communities to heat stress and evaluated the performance of native grasses both in the greenhouse, and transplanted under an artificial heat wave. They hypothesized that locally-sourced inoculum (a sample of local soil containing the right microbes) or even heat-primed inoculum would help alleviate water stress and improve survival of native grasses.

The Experiments

Rubin started in the greenhouse by planting Blue Grama (Bouteloua gracilis, C4 grass) and Arizona Fescue (Festuca arizonica, C3 grass) and assessed their responsiveness to locally collected soil inoculum that had either been left intact, pre-heated or sterilized (Fig. 1). Rubin says, “We expected that our plants would benefit the most from having intact soil microbe communities. But, we were surprised to find very large differences between plant species. Blue Grama performed the best with intact inoculum, whereas Arizona Fescue performed better with pre-heated or sterilized soil”. This could mean that Blue Grama is more dependent on its microbiome, whereas Arizona Fescue engineers a rhizosphere that contains more parasitic microbes rather than mutualistic microbes. Rachel says that understanding this relationship is important for tailoring plant restoration projects to local conditions. Plants that exhibit high levels of mutualisms with their rhizosphere might require an extra inoculum “boost” in order to successfully establish in highly degraded soil, whereas we should not bother to inoculate plants that tend to harbor parasites within their rhizosphere.

Research plot using infrared sensors and METER soil water content and soil water potential sensors

Fig. 2. A heated plot in the foreground connected to infrared lamps, water content and matric potential sensors, and EM50 data loggers.

After the team studied these responses, they planted the grasses into a degraded section of a grassland and installed an array of 1000-Watt ceramic infrared lamps mounted on steel frames (Fig. 2) to address whether inoculation influenced plant performance and survival. With help from a savvy undergraduate electrical engineering major (Rebecca Valencia), Rubin simulated a two-week heat wave while monitoring soil temperature and moisture using water content and water potential sensors.  She also measured plant performance (height, leaf number and chlorophyll content) before, during, and after the event. Control plots had aluminum “dummy lamps” to account for shading.

An infrared photo of the expirement

An infrared photo, which is how Rachel determined that the heating footprint was evenly distributed on all the plants. The scale bar on the right is in degrees C.

Data obtained from soil sensors helped Rachel to measure heating treatment effects as well as rule out a potential cause for plant mortality: soil moisture. “Soil temperature was on average 10 degrees hotter in heated plots than control plots, but matric potential and soil water content were completely unaffected by heating. This tells us that the grasses died from reasons other than water stress– perhaps a top-kill effect.” Although growing concern over heat waves in agriculture is centered around accompanying droughts, this experiment demonstrates that heating can produce negative effects on some species even when water is in plentiful supply.

Next week:  Learn the results of Rachel’s experiments, some of the challenges the team faced, and the future of this research.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Get more information on applied environmental research in our

Lysimeters Determine If Human Waste Composting Can Be More Efficient

In Haiti, untreated human waste contaminating urban areas and water sources has led to widespread waterborne illnesses such as typhoid, cholera, and chronic diarrhea.

Human wastes are making their way into Haiti’s waterways.

Human wastes are making their way into Haiti’s waterways.

Sustainable Organic Integrated Livelihoods (SOIL) has been working since 2006 to shift human waste as a threat to public health and source of pollution to being a resource for nutrient management by turning solid waste into compost.  This effort has been critical to sustainable agriculture and reforestation efforts, as topsoil in Haiti has severely eroded over time, contributing to Haiti’s extreme poverty and malnutrition.

Border between Haiti and the Dominican Republic from an aerial view

This is a very famous image of the border between Haiti and the Dominican Republic. It’s often used to demonstrate how badly off Haiti is relative to their neighbors. What you’re actually seeing is the environmental scars of a very different post-colonial history.

Why Compost?  

Topsoil erosion in Haiti was estimated to be 36.6 million metric tons annually in 1990, and it is estimated that only one sixth of the land currently cultivated in Haiti is suitable for agriculture. SOIL combats desertification by producing over 100,000 gallons of agricultural-grade compost made from human waste annually.  SOIL research has shown that this compost can increase crop yields by up to 400%.  The organization has sold over 60,000 gallons of this compost to local farmers and organizations, increasing soil organic matter and nutrients throughout the country.

Waste covers the urban area infecting people and causing problems

Today in Haiti, only 25% of people have access to a toilet – meaning people are forced to go to the bathroom outside or in urban areas, in a plastic bag, which often times gets disposed of in a canal or an empty lot.

How Do They Do It?

SOIL distributes specially constructed toilets throughout Haiti that separate urine from solid waste.  Odors are reduced by covering the solid waste with organic cover material.  The toilet utilizes a five gallon bucket to collect solid waste that can be swapped out when full.

Toilet in Haiti

Instead of flushing nutrients away with fresh water, people use a dry carbon material to cover it up so that it doesn’t smell, and it doesn’t attract flies. This material also provides food for the microbes that will ultimately transform the poop.

The five gallon buckets are collected weekly and taken to the composting facility, where they are dumped into large composting bins.  It takes about 1500 buckets (3-4 days worth) to fill each bin. Bins are required to reach 122°F and left for 2.5 months in order to kill all pathogens.

Waste water transformation chart

Wastes are safely transformed into nutrient-rich compost in a carefully monitored composting treatment process that exceeds the World Heath Organization’s standards for the safe treatment of human waste.

The compost is then removed from the bin and turned by hand. There are three concrete slabs used to manage the finishing process.  Compost is turned horizontally and then moved forward to the next slab, allowing multiple batches to be finishing at the same time, each at a different stage.  After processing, the compost is sifted, bagged, and sold, reinvigorating the agriculturally-based Haitian economy.  

Students study plants sold for agriculture

The compost SOIL produces is bagged under the Haitian Creole brand name “Konpòs Lakay” and then sold for agricultural application, improving both the fertility and water retention of soil. With over four billion people worldwide currently lacking access to waste treatment services, finding ways to provide waste treatment services profitability through the private sector has the potential to dramatically improve public health and agricultural outputs globally.

Understand the Impact

Watch this 5 minute video filmed by independent parties to see how SOIL is impacting Haitian citizens and the environment.

Next week:  Read how experiments using lysimeters will help SOIL make the composting process more efficient.  

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Founders of Environmental Biophysics: Champ Tanner

Champ Tanner

Champ Tanner (November 16, 1920 – September 22, 1990) Image: soils.wisc.edu

We interviewed Gaylon Campbell, Ph.D. about his association with one of the founders of environmental biophysics, Champ Tanner.

Who was Champ Tanner?

Champ Tanner was a dominant scientist in his time and a giant among his colleagues.  He was the first soil scientist to be elected a member of the National Academy of Sciences: the highest honor a scientist can achieve in the United States.  Some may not realize that throughout a career filled with achievements and awards, he battled the challenges of a debilitating illness.  He didn’t let that limit his passion for science, however.  His efforts to understand and improve measurements generally went beyond those of his fellow scientists.  One of his colleagues once said of him, “Champ’s life exemplified goal-oriented determination and optimism regardless of physical or financial impediment.”

Green wheat stalks

Dr. Tanner was one of the pioneers in applying micrometeorology to agriculture.

What were his scientific contributions?

Champ was an extremely careful experimentalist who was gifted at developing instrumentation.   He started out making significant contributions in soil physics such as improved methods for measuring water retention, particle size distribution, air-filled porosity, and permeability.  He was one of the pioneers in applying micrometeorology to agriculture and was passionate about finding ways to improve the precision and reliability of measurements.  No measurement was too difficult.  He designed and built his own precise weighing lysimeters which provided measurements of evapotranspiration in as little as 15 minutes.   Later, he switched to plant physiology, reading almost every published paper on the subject and then building his own thermocouple psychrometer and plant pressure chambers, making important contributions in that field.

His largest contribution, however, was the measure of excellence he inspired in the students that he trained.   I don’t know of anybody, anywhere in the world, that produced a crop of students that has attained the levels that his have.  They’ve all made enormous contributions in many different fields.  Perhaps it was because he was a pretty hard taskmaster.   He expected the students to meet a standard, and the ones that struggled with that had a hard time. In fact, to this day one former student complains, “About once a year, I have a nightmare in which Champ appears.”

Boy walking through a library

I don’t know of anybody, anywhere in the world, that produced a crop of students that has attained the levels that his have.

Champ wanted his students to measure up, but he also cared about them.  His fellow scientist, Wilford Gardner, described him this way, “There was a transcendent integrity to his personality that permeated everything he did.  He could be blunt, candid and forthright, but he was never lacking in compassion and concern for students, colleagues, and friends.”

What was your association with him?

I had a wonderful relationship with Champ, although I wasn’t one of his students. One of his former students came to WSU as a visiting scientist and told him about what I was working on.  As a result, he brought me into his inner circle of associates and played a vital role in the success of my research.  This association even extended to my family who were with me on one of my many trips to Madison. Despite my numerous and occasionally unruly progeny, he and his wife welcomed us like long lost relatives and made each of the children feel special.  That’s who they were: the most caring and outgoing people.

Champ also had a sense of humor.  He used to call me up to have long discussions about science, and because he was two time zones ahead, it would get pretty late for him. We’d be having an intense discussion about experimentation, and all of a sudden he’d stop and say, “Oh, I’d better cut this off, or I’ll get home to a cold supper and a hot wife.”

What kind of a person was he?

If you worked in his lab, you needed to tow the mark.  You didn’t leave tools around, and you didn’t mess them up. If you left out a screwdriver, you’d find it on your desk the next morning with a terse note.  And if you took the diagonal pliers, cut some hard wire with it and left some nicks, those would be on your desk too. It was a sort of tough love, but he used it to train his students to the highest possible level.  

Researcher looking through a microscope

He taught his students to be rigorous in their measurement protocols

He wanted his students to stand up and argue for their point.  If you were the kind of person that could stand your ground and put up a good defense, he loved that.  Gardner described Champ in this way, “His work hours were legendary.  His standards of science and personal integrity were almost unrealistically high.  The stories his students now pass on to their students may sound apocryphal to those who did not know Champ.  But it was impossible to exaggerate where Champ was concerned.”

What do you think scientists today can learn from him?

What we can learn from Champ Tanner is not to fool ourselves.  He thought you should try to come to an answer in a few different ways, to be sure that it really was the answer. He taught his students to be rigorous in their measurement protocols in order to get the noise out of their experiments.  He wanted them to dig to the bottom of problems and understand the details.  In his mind, you couldn’t be a scientist and rely on somebody else to figure out heat transfer or radiation. He thought you should understand it well enough that you could defend it yourself.   

You can read more about Champ Tanner’s life and scientific contributions in this biographical sketch, written for the National Academy of Sciences when he died.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Does Early Planting Increase Risk to Winter Canola?

Many dryland winter canola growers assume that if they plant earlier, they will establish a stronger plant, but Washington State University researcher Megan Reese recently found that this was not the case.  She and her team discovered that planting earlier increases risk to the plant, as more water is used, and the reduced amount of water then left after the winter season limits spring regrowth. Megan’s findings could be valuable as water is the most yield-limiting factor in eastern Washington state’s wheat-dominated dryland systems, where winter canola has newly emerged as a rotational crop.

Bright yellow canola field in full bloom

Winter canola is cold hardy, but it’s not as resilient as wheat.

Early Planting:

Winter canola is cold hardy, but it’s not as resilient as wheat.  It’s planted in August, much earlier than winter wheat, which is planted in the late fall.  In order to survive, winter canola has to establish a hardy taproot system so that plants have reserves to survive the winter. Megan says, “Opinions vary, but anecdotally, a dinner plate sized plant can survive winter fairly well, so that’s why winter canola is planted in August . However, because establishment and germination can be an issue, we decided to try planting in June at Ritzville, Washington, thinking the soil would be more moist and have a cooler seedbed.  However, the early planting date had a negative effect on winter survival. Not one of the early plants survived.  We found the plants that started earlier used a lot more water, and consequently, the winter rains weren’t enough to refill the soil profile.  Excessive growth and bolting also contributed to low survivorship.”

Methods and Moisture Release Curves:

Megan monitored soil water in the profile several different ways.  At one location she used a neutron probe and hand-sampled gravimetric soil moisture in the top 30 cm of the profile, and in other locations, she was limited to  hand samples.  Then she combined those measurements with local weather stations to provide the crop water balance for the canola.  Using these data, she was able to determine soil water use as indicated by the water content change through the growing season and calculate the depletion of soil water.  

Image of blooming winter Canola

Anecdotally, a dinner plate sized plant can survive winter fairly well.

Megan also took soil samples into the lab from each depth increment at every site and used a chilled mirror hygrometer to construct a moisture release curve.  This helped her to define the apparent permanent wilting point at -1.5 MPa.  She says, “I was able to then see how efficient canola was at extracting available water, and I could look at available water instead of total water contents, which was more useful in terms of plant accessible moisture in the soil profile. It allowed me a consistent platform to compare actual water amounts across sites with differing soil types.  At one site, 12.5% of the water was unavailable, but in the sandier soils at another site, it was 4%.  So there were significant differences in permanent wilting point.”

Water and Physiological Challenges Affect Winter Survival:

Megan found that the June planted canola used every milliliter of available water in the soil profile by late October/early November, but August-planted canola still had some water above wilting left in the profile over the winter, which helped the plants in the spring.  She says, “It was a milder winter, so we didn’t get the usual amount of snow and rain, which probably played a role, but we did not see the profile refilled in the June-planted canola.  In addition, those June plants were purple and wilted by November, so water stress could have hurt the plants in terms of its defenses. However, I think a larger issue was that they grew so large (the crowns actually elongated and bolted so they weren’t close to the soil) they were more susceptible to the harsh temperatures, whereas the August planted canola were much smaller and their crowns stayed right on the soil surface.”  These findings are based on only one year of data, and Megan notes that early plantings have worked well in the milder climate of Pendleton, OR.

What Does it Mean for Farmers?

Megan says, “We were able to surprise a lot of farmers by showing that canola roots access water down to 1.5 to 1.7 m in the fall; it was hard to believe that a winter crop would do that. Also, in my second year’s data, we followed water use all the way through harvest, so we were able to show how much yield we gained for every millimeter of water used, and farmers liked hearing that number as well.  I think it’s useful information that incorporates biophysics principles and answers some questions that these new canola producers are interested in.  I have three locations this season that we are currently following to give farmers a further idea of what the water use looks like, when canola uses that water, and from where in the soil profile.  Hopefully, this research will help them manage their rotations and look at the possibility of adopting canola.”

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

The Tensiometer: Micro-sized

A strand of a spider’s web is 5 micrometers in width. Microelectromechanical systems (MEMS) devices range in size from 20 micrometers to one millimeter. That’s the incredibly small size of the components used in the tensiometer being developed by PhD candidate, Michael Santiago, and his collaborators, professors Abraham Stroock and Alan Lakso  at Cornell University.

Spider wed with dew water on the strands

MEMS devices can be as small in width as 4 strands of a spider’s web.

The engineer/research team is using MEMS technology to develop a miniature tensiometer (microtensiometer) that has a 100 times larger range than existing tensiometers, is stable for months, communicates digitally, and can be embedded into plant stems to directly measure plant water potential.

Existing Tensiometer Limitations:

Water potential is the best measure of a plant’s hydration relative to growth and product yield. Unfortunately, directly measuring water potential in plant tissue is only possible through labor-intensive, destructive methods such as the leaf pressure bomb and stem psychrometer. A common alternative is to use ‘set-and-forget’ soil tensiometers to measure soil water potential as a proxy for plant water potential, but this method is unreliable for plants with high hydraulic resistance (vines and woody species), where plant water potential is often much less than the water potential in soil. Although soil tensiometers are very accurate and simple to use, they can be large and bulky, and cavitate as soils dry.

A 25 cent coin next to a prototype microtensiometer

Prototype microtensiometer made with MEMS components.

Solution:

The Cornell University research team wants to improve the design of the tensiometer so it can be used in the field for applications such as continuously monitoring and controlling plant water potential in vineyards to consistently produce high-quality wine grapes with an exact flavor/aroma profile.  Santiago says, “We’ve basically miniaturized a tensiometer using microchip technology to the point where it’s this tiny chip inside a wafer. Because of the way we fabricated it, we are hoping to make it an embeddable tensiometer that can go in anywhere and measure tension down to about -100 bars (-10 MPa).”

Developing and Calibrating

Santiago is using a chilled mirror hygrometer to produce solutions of specific water potential to test, calibrate, and characterize the microtensiometer.  He comments, “We’ve been testing it in osmotic solutions. We use the water potential meter for calibrating a solution of PEG (polyethylene glycol), and then we measure it with the tensiometer.”

One hurdle the team has to overcome is finding a membrane that keeps small molecules and ions out of the tensiometer pores: these pollute the water inside the tensiometer and cause measurement errors. Santiago explains,Our solution right now is to test in solutions of large molecules, such as PEG of 1400 molecular weight. The tensiometer pores are about 3-4 nanometers, extremely small, but small molecules, such as sugars and salts, can still get through. It’s not a problem for the short term because we are directly submerging into solutions of just water and large molecules, but our goal is to go into the environment and insert the tensiometer into soils and plant stems where small molecules are ubiquitous, so we’ll have to find a membrane that works and can handle field testing.”

The team has been experimenting with materials such as Gore-Tex and reverse osmosis membranes [M5]  [M6] hoping to find a membrane that allows water through and keeps ions out, but does not slow the measurement.

Close up of a plant

Researchers want be able to insert the device directly into plant xylem.

What’s Next?

Santiago says the calibrations have worked well. Now the challenge will be putting the tensiometer into different environments such as soil, concrete, and plants. For example, they want be able to insert the device directly into plant xylem, which will require a seal so water is not exiting the system.  And that’s not the only complication. Santiago explains, “We are getting ready to do some testing in soils. The challenge will be getting good data because soil can be really heterogeneous, and we have this sensor with a much larger range than the usual tensiometer. So what do we compare it with? That’s going to be a bit of a challenge.” Santiago says the next few months will be spent getting into some different materials and obtaining some initial publishable data.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Climate Change, Genetics, and the Future World

Climate change scientists face a particular challenge— how to simulate climate change without contributing to it. Paul Heinrich, a Research Informatics Officer associated with the Southwest Experimental Garden Array (SEGA) remembers looking at the numbers for a DOE project that would have used fossil fuel to measure forests’ response to temperature change. “It would have been very, very expensive in fossils fuels to heat a hectare of forest,” he says.

The alternative is, “to use elevation change as a surrogate for climate change so we could do climate change manipulations without the large energy costs.”

SEGA Vegetation Zones diagrams

An overview of the SEGA sites using elevation change as a surrogate for climate change. For more information on these sites, visit http://www.sega.nau.edu/. Photo credit Paul Heinrich

By monitoring organisms across a temperature gradient it is possible to identify genetic variation and traits within a species that could contribute to a species survival under projected future climates.

Control and Monitoring Infrastructure

SEGA is an infrastructure project started in 2012 after researchers at Northern Arizona University’s Merriam-Powell Center for Environmental Research were awarded a $2.8 million dollar NSF grant with a $1 million match from NAU. Consisting of ten fenced garden sites for genetics-based climate change research, SEGA is set on an elevation gradient from 4000 to 9000 feet in the Southwestern United States. Each SEGA site has an elaborate data collection and control system with meteorological stations and site-specific weather information. Custom-engineered Wireless Sensing Actuating and Relay Nodes (WiSARDs) send data packets to a hub which then send the data back to a centralized server.

Because there is inherent moisture content variability from site to site, volumetric water content and soil water potential sensors have been installed to monitor and maintain moisture levels. If there is a change in soil moisture at one site, soil sensors will detect the difference. Software on the server notes the difference and sends a signal to the other sites, turning on irrigation until the soil moisture matches across sites.

SEGA Cyberinfrastructure Major Components diagram

An illustration of SEGA’s cyberinfrastructure and data management system. Photo credit Paul Heinrich.

Having such an elaborate infrastructure creates an opportunity for researchers looking to conduct climate change research. By offering access to the pre-permitted SEGA sites, the hope is that research will generate much-needed data for climate projections and land management decisions.

When asked if the data stream was overwhelming to manage Heinrich said, “Well, not yet. We are just getting started. The system is designed for what SEGA is expected to look like in ten years, where we expect to have 50 billion data points.”

Research Considerations

Climate change projections show temperatures increasing rapidly over the next 50 to 100 years, bringing drought with it. The impact of these changes will be dramatic. Temperature and drought tolerant species will survive, those that are not will die, drastically changing the landscape in areas that are currently water stressed. Pests like the pine beetle and invasive species like cheatgrass will do well in a drier environment where water-stressed natural species will not be able to compete.

Red canyon called Soap Creek AZ from an Aerial view

Soap Creek, AZ from above. With climate change projections it is likely that more land will become marginal. Photo credit Paul Heinrich.

“Foundational species,” or species that have a disproportionate impact on the ecosystem, are the primary focus of the research efforts at SEGA sites. These are the species that drive productivity, herbivore habitat, and carbon fixation in the ecosystem. Unlike forests in other parts of the United States, forests in the Southwest can be dominated by one or two species, which makes potential research subjects easier to identify.

Genetic Variance

Amy Whipple, an Assistant Professor in Biology and the Director of the Merriam-Powell Research Station who oversees the day-to-day activities at SEGA, has been conducting some of her own research at the garden sites. Whipple has studied Piñon Pine, Southwestern White Pine, and has a proposal to study Cottonwood in process.

Whipple says that models currently suggest that Piñon Pine will be gone from Arizona within the next 50 years, adding that the models do not take into account possibilities for evolution or genetic variance that might help the Piñon survive. Her research is largely asking, will trees from hotter, drier locations have a better chance of surviving climate change? “We’re trying to do that with a number of different species to look for ways to mitigate the effects of climate change in the Southwest.”

Researchers documenting a Piñon Pine

Researchers documenting a Piñon Pine. Photo credit Paul Heinrich.

In some of her research on Piñon Pine, it was discovered that four different species were grouped morphologically and geographically from southern Arizona to Central Mexico. While this suggests that the divergence of species has occurred, it also suggests a low migration rate for these tree species. Migration rates of drought and temperature tolerant species is an important consideration when modeling for a future climate. If the migration of genetically adapted species cannot keep up with climate, the land could become marginal as a foundational species dies off.

Climate Change Predictions and Considerations

In the Southwest, there are entire forests that could become grassland in 50 years because the genetic characteristics of the foundational species currently in those regions will not adapt to higher temperatures and drought stress. But what does this mean from a land management perspective?

Ponderosa pine tree hanging off the side of a rocky cliff in the desert

Ponderosa pine trees, a foundational species in some area of the Southwestern United States.

Environmental conservationists maintain that we should protect the unique species that are in a place and that introducing other organisms or genetic material would be an ethical violation. Environmental interventionists make the argument that climate change has been caused by humans, so we have lost the option of remaining bystanders.

Research, Land Management and Policy

Paul Heinrich says that the route we take to manage the land will depend on our end goals. “Places that have trees now, if you want them to have trees 50 years from now, you are going to have to do something about it. The trees that are on the landscape right now are locally adapted to the past climate. They are not necessarily adapted to the future climate. They are probably maladapted to the future climate.”

To be clear, SEGA’s goal is not to promote or implement assisted migration. Instead, Amy Whipple says, SEGA can test what the effects of assisted migration might be. “In a smaller experimental context, we’re asking: how will these plants do if we move them around? What will happen to them if we don’t move them around?’” The goal is to provide decision makers with the data they need to make informed decisions about how to manage the land.

Image of a Meadow with trees in the distance and a set of mountains

The Arboretum Meadow in Flagstaff, AZ. Home of one of the SEGA research sites. Photo credit Paul Heinrich.

Whipple’s own view is that we may no longer have the option of doing nothing. “Unless major changes are made for the carbon balance of the planet, keeping things the same is not a viable option. Managing for a static past condition is not viable anymore.”

Remaining Questions

Both Heinrich and Whipple acknowledge that these are inherently difficult questions. Ultimately the public and land managers must make these decisions. In the meantime, data from SEGA research may help ensure better predictions, better decisions, and better outcomes.

To find out more about conducting your own climate change research using SEGA go to: http://www.sega.nau.edu/use-sega

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Get more information on applied environmental research in our

Green Roofs—Do They Work? (Part II)

Innovative soil scientist, John Buck, and his team have discovered that green roofs have more capacity than people imagined (see part I).  Below are some of the challenges he sees for the future, and the type of measurements he suggests researchers take, as they continue to validate the effectiveness of these urban ecosystems.

Green and whited plant on a garden rooftop with orange rocks

A green roof is essentially a garden on a roof, but rather than growing plants in soil, installers use a synthetic substrate made of expanded shale, expanded clay, crushed brick, or other highly porous, lightweight material.

New Challenges for Green Roofs

Green roof results are promising, but they present a new challenge:  making sure the plants have enough water. The crux of the challenge is that the lightweight, expanded shale/clay substrate material, the standard in green roof design, does a good job of soaking up the water, but has some peculiar properties that are unlike typical soils.  Specifically, the expanded shale and expanded clay media tend to be dominated by sand and fine gravel-sized particles that provide a high proportion of macropores, but the interior porosity of the large particles is dominated with micropores.  That pore size distribution leads researchers to two important questions— How much water will be readily available for plant growth? And, will the unsaturated hydraulic conductivity be adequate to avoid starving the roots under high-evaporative demand by allowing water to flow to roots from the bulk soil? These are critical questions as green roof technologies continue to evolve.

Overhead close up of garden roof plant

Researchers wonder, will the unsaturated hydraulic conductivity be adequate to avoid starving the roots under high-evaporative demand.

Measurements Required for Green Roof Validation

Still, Buck has learned a great deal from his work.  Considering the wild spatial distribution of summer storms, quantitative green roof performance studies require that rainfall be measured locally. Monitoring of soil volumetric moisture content measurements in concert with rainfall and soil lysimeter measurements of drainage, reveal the degree of total and capillary saturation, drainage rate, and porosity available for storage. Soil water potential sensors, placed within the capillary fringe of water ponded over subsurface drainage layers, can provide useful insights regarding the dryness of the drainage layer and overlying soil, as well as the available storage of stormwater within the drainage layer.

Direct measurement of soil drainage using lysimeters is a key supplemental measurement on green roof performance quantification projects because there is an unmeasured component of water storage where drought-resistant alpine succulents (typically Sedum species) are used on green roofs.  The Sedum plants can absorb up to 10 mm of rainfall equivalent in their plant tissues.

Plants poking out of the soil in front of a house

Measurement of soil drainage using lysimeters is a key supplemental measurement on green roof performance quantification projects.

Other Projects and Future Plans

At ground level, Buck is quantifying the performance of intensive stormwater infiltration areas known as rain gardens, bioretention areas, or more generically, infiltration-based stormwater best management practices (Infiltration-based BMPs).  When monitoring infiltration-based stormwater BMPs, Buck has used similar tools to those used on green roofs, but has added water-level sensors and piezometers.  Buck has found that ancillary measurements of electrical conductivity, often available on water content sensors, along with surface and pore water sampling, can be used to document transformations taking place in infiltration systems.  These measurements now combine to show that green roofs and infiltration-based BMPs are indeed making a difference to urban environments and contributions to CSOs.  The challenge now is how to implement this technology more widely.  But, with the validation now in hand, that job should be quite a bit easier.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Can Wastewater Save The United Arab Emirates’ Groundwater?

The hyper-arid United Arab Emirates (UAE) has a rapidly dwindling supply of groundwater, and that water is becoming increasingly saline.

Image of the city of Dubai at night on the coast of the UAE

Dubai is situated on the coast of the UAE.

With very little recharge and irrigation comprising 75% of groundwater use, natural water resources in this region are disappearing fast.  PhD candidate Wafa Al Yamani works for the Environmental Agency of Abu Dhabi, which has contracted with Plant and Food Research in New Zealand to investigate using treated sewage effluent and groundwater for irrigating the desert forests along their motorways.  

Sidr tree plantation in the UAE forest in the sand

Sidr trees in the UAE forest.

The Desert Forests

The UAE desalinates all the water for their cities, so the tertiary treated sewage effluent from these cities could be a viable resource, replacing some groundwater for irrigation of the desert forests. These forests perform a wide range of ecosystem services from sand stabilization along all UAE motorways to harboring a great deal of biodiversity.  There is also a cultural association with the forests.  The original ruler of the UAE, Sheikh Zayed, embarked on a program in the 1970s of “greening the desert,” so the people see the desert forests as a legacy of their founder.

Infiltrometer pushing sand and being measured

Infiltrometers were used to examine how the drip irrigation system worked.

Measuring Water Use:

Wafa and her PhD advisor, Dr. Brent Clothier, had a goal to minimize groundwater use and maximize value by quantifying the irrigation needs of the UAE’s five most important desert-forestry species.  They also wanted to determine the impact of treated sewage effluent on forest growth and health.  They used infiltrometers to examine how the drip irrigation system worked.  Dr. Clothier says, “These soils have hydraulic conductivities of between 2 and 5 meters an hour.  They are highly permeable desert sands.  We can find out how wide the bulb (the wetted area underneath an irrigation dripper) is and how deep the water will travel by using an infiltrometer to look at the hydraulic properties of the soil.”  Dr. Clothier has also developed software to predict water movement radially, with depth and with the time that the drippers are on.  He comments, “We’ve now got a setup of two drippers per tree, and we will use that in the future for modeling how the trees are taking up water from the root zone.”

Tree with 20cm dykes accessing the dripper water

Researchers built dykes of 20 cm to stop surface redistribution of dripper water.

The scientists used a heat pulse method to measure tree water-use by comparing sap flow with evaporative demand (ETo).  They used Time Domain Reflectometry (TDR) to measure soil water content, and they have developed a “light stick” using light sensors to detect the shadow area of the trees to measure trees’ leaf area in order to predict the crop factor that will enable prediction of tree water-use from ETo.

Next week:  Find out how Wafa and her team use infiltrometers to predict dripper behavior and how the treated effluent resolves salinity issues.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Predicting the Stability of Rangeland Productivity to Climate Change

Dr. Lauren Hallett, researcher at  the University of California, Berkeley, recently conducted a study testing the importance of compensatory dynamics on forage stability in an experimental field setting where she manipulated rainfall availability and species interactions. She wanted to understand how climate variability affected patterns of species tradeoff in grasslands over time and how those tradeoffs affected the stability of things like forage production across changing rainfall conditions.

field with species tradeoffs standing in the brush

Species tradeoffs could help mitigate the negative effects of climate variability on overall forage production.

Species Tradeoff

A key mechanism that can lead to stability in forage production is compensatory dynamics, in which the responses of different species  to climate fluctuations result in tradeoffs between functional groups over time. These tradeoffs could help mitigate the negative effects of climate variability on overall forage production.  Dr. Hallett comments, “In California grasslands, there’s a pattern that is part of rangeland dogma, that in dry years you have more forbs, and in wet years you have more grasses. I wondered if you could manage the system so that both forbs and grasses are present in the seed bank, able to respond to climate.  This would perhaps buffer community properties, like soil cover for erosion control and forage production in terms of biomass, from the effects of climate variability.”

Tradeoff in a green field, aerial view

In areas experiencing moderate grazing, there was a strong species tradeoff between grasses and forbs.

Manipulating Species Composition

Dr. Hallett capitalized on the pre-existing grazing manipulation that her lab had done over the previous four years.  The grazing she replicated for this study was experimentally controlled, making it easier to ensure consistency.  She built rainout shelters where she collected the water and applied it to dry versus wet plots.  She also manipulated species composition, allowing only grasses, only forbs, or a mix of the two.  These treatments allowed her to study changes in cover and biomass.

Hallett used soil moisture probes and data loggers to characterize the treatment effects of this experiment and to parameterize models that predict rangeland response to climate change.  She says, “I wanted to verify that my rainfall treatments were getting a really strong soil moisture dynamic, and I found the shelters and the irrigation worked really well.”  Along with above-ground vegetation, she collected soil cores and looked at nutrient differences in conjunction with soil moisture.  Since her field site is located within the Sierra Foothills Research and Extension Center, Dr. Hallett was able to rely on precipitation data that was already measured on-site.  

Results

Dr. Hallett found that in areas experiencing moderate grazing, there was a strong species tradeoff between grasses and forbs.  She comments, “I had a seedbank that had both functional groups represented, and those tradeoffs did a lot to stabilize cover over time.”

When Dr. Hallett replicated the experiment in an area that had a history of low grazing, she found that the proportion of forbs wasn’t as high in the seedbank.  As a consequence, there was a major loss of cover in the dry plots.  She explains, “When the grass died, there weren’t many forbs to replace it, and you ended up with a lot of bare ground. The areas that were lightly grazed had more litter, so initially, the soil moisture was okay, but as the season progressed into a dry condition and the litter decomposed, there wasn’t enough new vegetation to stabilize the soil.”  As a result, Dr. Hallett thinks in low-grazed areas it’s important to have an intermediate level of litter. She says, “You need enough litter to increase soil moisture, but not so much that it would suppress germination of the forbs because as the season progresses and gets really dry, if you don’t have forbs in the system, you lose a lot of ground cover.”

Surprises Lead to A New Study

Dr. Hallett was surprised that within her three treatments there seemed to be differences in when the functional groups were drying down the soil.  This inspired new questions, leading her to use her dissertation data to generate a larger grant through the USDA.  Her new study will perform extensive rainfall manipulations to measure the effects of early-season versus late-season dryout, and vary species within those parameters.  She says, “One of the reasons you have grass years versus forb years is the timing of rainfall.  For instance, if you have a really dry fall, you tend to have more forbs because their seedlings are more drought resistant.  Conversely, if you have a wet fall, you tend to see more grasses because you have continual germination throughout the season. So, the timing of rainfall matters in terms of what species are in the system.  We are going to look at the coupling between the species that gets selected for the fall versus what would be able to grow well in the spring, and we will be studying how that affects a whole range of things such as ground cover, above-ground production for forage, below-ground investment of different functional groups, and how these things might relate to nutrient cycling and carbon storage.”

You can read more about Dr. Hallett’s rangeland research and her current projects here.  

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Using The Salt Balance Approach to Measure Soil Drainage

Understanding the amount of drainage that comes out of the bottom of the root zone and infiltrates into groundwater recharge is a very difficult measurement to do well. Drain gauges do a good job of it but on a small scale. Large lysimeters do an even better job, but are extremely expensive and complex.  There is an economical alternative, however, called the salt balance approach to measuring drainage.

Soil profile underneath canola

Soil profile underneath canola

The Salt Balance Approach

Since the majority of non-fertilizer salts in the soil solution don’t get taken up by plants, this salt can be used in soil as a conservative tracer.  This means that whatever salt is applied to the soil through rainfall or irrigation water is either stored in the soil or leaches through the profile with the soil water, enabling us to use conservation of mass in our salt balance analysis. The electrical conductivity of water (ECw) is directly proportional to the salt concentration, so ECw can be used in place of salt concentration in this analysis.  If you measure the EC of the water that’s applied to the soil, either through irrigation or precipitation,  as well as the EC of the water that’s coming out of the bottom of your profile, then you can calculate what fraction of the applied water is being transpired by the plants, and what fraction is draining out of the bottom.  This method is useful for measuring water balance at field sites.

To illustrate this concept, let’s work through a simple example.  A particular field received 40 cm of water through precipitation and irrigation.  The average ECw of the precipitation and irrigation water is 0.5 dS/m.  Measurements of ECw draining from the soil profile below the root zone indicate an ECw of 2.0 dS/m.  The drainage or leaching fraction can be easily calculated as :

ECw(applied) / ECw(drained) = 0.5 dS/m / 2.0 dS/m = 0.25

The amount of water drained can also be easily calculated as:

Leaching fraction * applied water = 0.25 * 40 cm = 10 cm

Measuring Pore Water EC (ECw)

One challenge to this approach is the measurement of water electrical conductivity itself.  Bulk EC is a relatively simple measurement, and several types of soil water content sensors measure it as a basic sensor output.  However, the electrical conductivity of water, called pore water EC (ECw), is more complex.  Pore water EC requires that it be either estimated from the bulk EC and soil water content or that a sample of pore water be pulled from the soil matrix and measured.  When estimated, pore water EC can contain considerable error.  In addition, removing a water sample and measuring the pore water EC is not easy. 

To learn more about measuring EC, read our EC app guide.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our